Suppr超能文献

基于简化的临床病理特征和血清肿瘤标志物建立胃癌腹膜转移的列线图并验证其效能。

Development and validation of nomogram of peritoneal metastasis in gastric cancer based on simplified clinicopathological features and serum tumor markers.

机构信息

Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.

Department of Gastrointestinal Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.

出版信息

BMC Cancer. 2023 Jan 18;23(1):64. doi: 10.1186/s12885-023-10537-7.

Abstract

BACKGROUND

Peritoneal metastasis (PM) is not uncommon in patients with gastric cancer(GC), which affects clinical treatment decisions, but the relevant examination measures are not efficiently detected. Our goal was to develop a clinical radiomics nomogram to better predict peritoneal metastases.

METHODS

A total of 3480 patients from 2 centers were divided into 1 training, 1 internal validation, and 1 external validation cohort(1949 in the internal training set, 704 in the validation set, and 827 in the external validation cohort) with clinicopathologically confirmed GC. We recruited 11 clinical factors, including age, sex, smoking status, tumor size, differentiation, Borrmann type, location, clinical T stage, and serum tumor markers (STMs) comprising carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 72-4 (CA72-4), and carcinoembryonic antigen (CEA), to develop the radiomics nomogram. For clinical predictive feature selection and the establishment of clinical models, statistical methods of analysis of variance (ANOVA), relief and recursive feature elimination (RFE) and logistic regression analysis were used. To develop combined predictive models, tumor diameter, type, and location, clinical T stage and STMs were finally selected. The discriminatory ability of the nomogram to predict PM was evaluated by the area under the receiver operating characteristic curve(AUC), and decision curve analysis (DCA) was conducted to evaluate the clinical usefulness of the nomogram.

RESULTS

The AUC of the clinical models was 0.762 in the training cohorts, 0.772 in the internal validation cohort, and 0.758 in the external validation cohort. However, when combined with STMs, the AUC was improved to 0.806, 0.839 and 0.801, respectively. DCA showed that the combined nomogram was of good clinical evaluation value to predict PM in GC.

CONCLUSIONS

The present study proposed a clinical nomogram with a combination of clinical risk factors and radiomics features that can potentially be applied in the individualized preoperative prediction of PM in GC patients.

摘要

背景

胃癌(GC)患者中腹膜转移(PM)并不少见,这影响了临床治疗决策,但相关的检查措施并不能有效地检测到。我们的目标是开发一种临床放射组学列线图,以更好地预测腹膜转移。

方法

共纳入来自 2 个中心的 3480 例经临床病理证实的 GC 患者,分为 1 个训练集、1 个内部验证集和 1 个外部验证集(内部训练集 1949 例、验证集 704 例、外部验证集 827 例)。我们招募了 11 个临床因素,包括年龄、性别、吸烟状况、肿瘤大小、分化程度、Borrman 类型、位置、临床 T 分期和血清肿瘤标志物(STMs),包括糖链抗原 19-9(CA19-9)、糖链抗原 72-4(CA72-4)和癌胚抗原(CEA),以开发放射组学列线图。为了进行临床预测特征选择和建立临床模型,我们使用方差分析(ANOVA)、缓解和递归特征消除(RFE)和逻辑回归分析等统计方法。为了建立联合预测模型,最终选择了肿瘤直径、类型和位置、临床 T 分期和 STMs。通过受试者工作特征曲线下面积(AUC)评估列线图预测 PM 的区分能力,并通过决策曲线分析(DCA)评估列线图的临床实用性。

结果

在训练队列中,临床模型的 AUC 为 0.762,内部验证队列为 0.772,外部验证队列为 0.758。然而,当与 STMs 结合时,AUC 分别提高到 0.806、0.839 和 0.801。DCA 表明,联合列线图对预测 GC 患者的 PM 具有良好的临床评估价值。

结论

本研究提出了一种结合临床危险因素和放射组学特征的临床列线图,可潜在应用于 GC 患者腹膜转移的个体化术前预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e84c/9850578/a5b4581d4973/12885_2023_10537_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验