Suppr超能文献

基于机器学习预测胃癌患者的腹膜转移。

Predicting Peritoneal Metastasis of Gastric Cancer Patients Based on Machine Learning.

机构信息

School of Medicine, Southeast University, Nanjing, China.

Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

Cancer Control. 2020 Jan-Dec;27(1):1073274820968900. doi: 10.1177/1073274820968900.

Abstract

OBJECTIVE

The aim is to explore the prediction effect of 5 machine learning algorithms on peritoneal metastasis of gastric cancer.

METHODS

1080 patients with postoperative gastric cancer were divided into a training group and test group according to the ratio of 7:3. The model of peritoneal metastasis was established by using 5 machine learning (gbm(Light Gradient Boosting Machine), GradientBoosting, forest, Logistic and DecisionTree). Python pair was used to analyze the machine learning algorithm. Gbm algorithm is used to show the weight proportion of each variable to the result.

RESULT

Correlation analysis showed that tumor size and depth of invasion were positively correlated with the recurrence of patients after gastric cancer surgery. The results of the gbm algorithm showed that the top 5 important factors were albumin, platelet count, depth of infiltration, preoperative hemoglobin and weight, respectively. In training group: Among the 5 algorithm models, the accuracy of GradientBoosting and gbm was the highest (0.909); the AUC values of the 5 algorithms are gbm (0.938), GradientBoosting (0.861), forest (0.796), Logistic(0.741) and DecisionTree(0.712) from high to low. In the test group: among the 5 algorithm models, the accuracy of forest, DecisionTree and gbm was the highest (0.907); AUC values ranged from high to low to gbm (0.745), GradientBoosting (0.725), forest (0.696), Logistic (0.680) and DecisionTree (0.657).

CONCLUSION

Machine learning can predict the peritoneal metastasis in patients with gastric cancer.

摘要

目的

旨在探讨 5 种机器学习算法对胃癌腹膜转移的预测效果。

方法

将 1080 例术后胃癌患者按 7∶3 的比例分为训练组和测试组,采用 5 种机器学习(gbm(Light Gradient Boosting Machine)、GradientBoosting、forest、Logistic 和 DecisionTree)建立腹膜转移模型。使用 Python 对机器学习算法进行分析,gbm 算法展示各变量对结果的权重比例。

结果

相关性分析显示,肿瘤大小和浸润深度与胃癌术后患者复发呈正相关。gbm 算法结果显示,前 5 位重要因素分别为白蛋白、血小板计数、浸润深度、术前血红蛋白和体重。在训练组中:5 种算法模型中,GradientBoosting 和 gbm 的准确率最高(0.909);5 种算法的 AUC 值依次为 gbm(0.938)、GradientBoosting(0.861)、forest(0.796)、Logistic(0.741)和 DecisionTree(0.712)。在测试组中:5 种算法模型中,forest、DecisionTree 和 gbm 的准确率最高(0.907);AUC 值依次为 gbm(0.745)、GradientBoosting(0.725)、forest(0.696)、Logistic(0.680)和 DecisionTree(0.657)。

结论

机器学习可预测胃癌患者腹膜转移。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验