人工智能在乳腺癌成像中的应用:风险分层、病变检测与分类、治疗规划及预后——一篇综述

Artificial intelligence in breast cancer imaging: risk stratification, lesion detection and classification, treatment planning and prognosis-a narrative review.

作者信息

Cè Maurizio, Caloro Elena, Pellegrino Maria E, Basile Mariachiara, Sorce Adriana, Fazzini Deborah, Oliva Giancarlo, Cellina Michaela

机构信息

Postgraduate School in Diagnostic and Interventional Radiology, University of Milan, 20122 Milan, Italy.

Centro Diagnostico Italiano, 20147 Milan, Italy.

出版信息

Explor Target Antitumor Ther. 2022;3(6):795-816. doi: 10.37349/etat.2022.00113. Epub 2022 Dec 27.

Abstract

The advent of artificial intelligence (AI) represents a real game changer in today's landscape of breast cancer imaging. Several innovative AI-based tools have been developed and validated in recent years that promise to accelerate the goal of real patient-tailored management. Numerous studies confirm that proper integration of AI into existing clinical workflows could bring significant benefits to women, radiologists, and healthcare systems. The AI-based approach has proved particularly useful for developing new risk prediction models that integrate multi-data streams for planning individualized screening protocols. Furthermore, AI models could help radiologists in the pre-screening and lesion detection phase, increasing diagnostic accuracy, while reducing workload and complications related to overdiagnosis. Radiomics and radiogenomics approaches could extrapolate the so-called imaging signature of the tumor to plan a targeted treatment. The main challenges to the development of AI tools are the huge amounts of high-quality data required to train and validate these models and the need for a multidisciplinary team with solid machine-learning skills. The purpose of this article is to present a summary of the most important AI applications in breast cancer imaging, analyzing possible challenges and new perspectives related to the widespread adoption of these new tools.

摘要

人工智能(AI)的出现是当今乳腺癌成像领域真正的变革者。近年来,已经开发并验证了几种基于AI的创新工具,有望加速实现真正针对患者的个性化管理目标。大量研究证实,将AI正确整合到现有临床工作流程中可以给女性、放射科医生和医疗系统带来显著益处。基于AI的方法已被证明在开发整合多数据流以规划个性化筛查方案的新风险预测模型方面特别有用。此外,AI模型可以在筛查前和病变检测阶段帮助放射科医生,提高诊断准确性,同时减少与过度诊断相关的工作量和并发症。放射组学和放射基因组学方法可以推断肿瘤的所谓成像特征,以规划靶向治疗。AI工具开发面临的主要挑战是训练和验证这些模型所需的大量高质量数据,以及对具备扎实机器学习技能的多学科团队的需求。本文的目的是总结乳腺癌成像中最重要的AI应用,分析与广泛采用这些新工具相关的可能挑战和新观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索