Suppr超能文献

MEDL-Net:一种基于模型的神经网络,用于具有增强深度学习正则化器的MRI重建。

MEDL-Net: A model-based neural network for MRI reconstruction with enhanced deep learned regularizers.

作者信息

Qiao Xiaoyu, Huang Yuping, Li Weisheng

机构信息

Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing, China.

出版信息

Magn Reson Med. 2023 May;89(5):2062-2075. doi: 10.1002/mrm.29575. Epub 2023 Jan 19.

Abstract

PURPOSE

To improve the MRI reconstruction performance of model-based networks and to alleviate their large demand for GPU memory.

METHODS

A model-based neural network with enhanced deep learned regularizers (MEDL-Net) was proposed. The MEDL-Net is separated into several submodules, each of which consists of several cascades to mimic the optimization steps in conventional MRI reconstruction algorithms. Information from shallow cascades is densely connected to latter ones to enrich their inputs in each submodule, and additional revising blocks (RB) are stacked at the end of the submodules to bring more flexibility. Moreover, a composition loss function was designed to explicitly supervise RBs.

RESULTS

Network performance was evaluated on a publicly available dataset. The MEDL-Net quantitatively outperforms the state-of-the-art methods on different MR image sequences with different acceleration rates (four-fold and six-fold). Moreover, the reconstructed images showed that the detailed textures are better preserved. In addition, fewer cascades are required when achieving the same reconstruction results compared with other model-based networks.

CONCLUSION

In this study, a more efficient model-based deep network was proposed to reconstruct MR images. The experimental results indicate that the proposed method improves reconstruction performance with fewer cascades, which alleviates the large demand for GPU memory.

摘要

目的

提高基于模型的网络的磁共振成像(MRI)重建性能,并减轻其对图形处理器(GPU)内存的大量需求。

方法

提出了一种具有增强深度学习正则化器的基于模型的神经网络(MEDL-Net)。MEDL-Net被分为几个子模块,每个子模块由几个级联组成,以模仿传统MRI重建算法中的优化步骤。来自浅层级联的信息与后面的级联紧密相连,以丰富每个子模块中的输入,并且在子模块末尾堆叠额外的修正块(RB)以增加灵活性。此外,设计了一个合成损失函数来明确监督RB。

结果

在一个公开可用的数据集上评估了网络性能。MEDL-Net在具有不同加速率(四倍和六倍)的不同MR图像序列上在定量方面优于现有方法。此外,重建图像表明细节纹理得到了更好的保留。此外,与其他基于模型的网络相比,在获得相同重建结果时所需的级联更少。

结论

在本研究中,提出了一种更有效的基于模型的深度网络来重建MR图像。实验结果表明,所提出的方法以更少的级联提高了重建性能,从而减轻了对GPU内存的大量需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验