Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany.
Magn Reson Med. 2024 Sep;92(3):1232-1247. doi: 10.1002/mrm.30114. Epub 2024 May 15.
We present SCAMPI (Sparsity Constrained Application of deep Magnetic resonance Priors for Image reconstruction), an untrained deep Neural Network for MRI reconstruction without previous training on datasets. It expands the Deep Image Prior approach with a multidomain, sparsity-enforcing loss function to achieve higher image quality at a faster convergence speed than previously reported methods.
Two-dimensional MRI data from the FastMRI dataset with Cartesian undersampling in phase-encoding direction were reconstructed for different acceleration rates for single coil and multicoil data.
The performance of our architecture was compared to state-of-the-art Compressed Sensing methods and ConvDecoder, another untrained Neural Network for two-dimensional MRI reconstruction. SCAMPI outperforms these by better reducing undersampling artifacts and yielding lower error metrics in multicoil imaging. In comparison to ConvDecoder, the U-Net architecture combined with an elaborated loss-function allows for much faster convergence at higher image quality. SCAMPI can reconstruct multicoil data without explicit knowledge of coil sensitivity profiles. Moreover, it is a novel tool for reconstructing undersampled single coil k-space data.
Our approach avoids overfitting to dataset features, that can occur in Neural Networks trained on databases, because the network parameters are tuned only on the reconstruction data. It allows better results and faster reconstruction than the baseline untrained Neural Network approach.
我们提出了 SCAMPI(基于深度磁共振先验的稀疏约束应用于图像重建),这是一种未经训练的深度神经网络,无需在数据集上进行预先训练即可进行 MRI 重建。它扩展了 Deep Image Prior 方法,采用多域稀疏约束损失函数,以比以前报道的方法更快的收敛速度实现更高的图像质量。
使用笛卡尔欠采样在相位编码方向重建来自 FastMRI 数据集的二维 MRI 数据,以实现不同的加速率,用于单线圈和多线圈数据。
我们的架构性能与最先进的压缩感知方法和二维 MRI 重建的另一个未经训练的神经网络 ConvDecoder 进行了比较。SCAMPI 通过更好地减少欠采样伪影并在多线圈成像中产生更低的误差指标,优于这些方法。与 ConvDecoder 相比,结合精心设计的损失函数的 U-Net 架构可以在更高的图像质量下更快地收敛。SCAMPI 可以重建多线圈数据,而无需明确了解线圈灵敏度分布。此外,它还是一种用于重建欠采样单线圈 k 空间数据的新工具。
我们的方法避免了对数据集特征的过度拟合,这可能会出现在基于数据库训练的神经网络中,因为网络参数仅在重建数据上进行调整。与未经训练的神经网络方法相比,它可以实现更好的结果和更快的重建。