Li W, Zhang X, Stern A, Birtwistle M, Iuricich F
School of Computing, Clemson University, United States.
Icahn School of Medicine at Mount Sinai, New York, United States.
Eurograph IEEE VGTC Symp Vis. 2022;2022:115-119. doi: 10.2312/evs.20221103.
Live-cell imaging is a common data acquisition technique used by biologists to analyze cell behavior. Since manually tracking cells in a video sequence is extremely time-consuming, many automatic algorithms have been developed in the last twenty years to accomplish the task. However, none of these algorithms can yet claim robust tracking performance at the varying of acquisition conditions (e.g., cell type, acquisition device, cell treatments). While many visualization tools exist to help with cell behavior analysis, there are no tools to help with the algorithm's validation. This paper proposes CellTrackVis, a new visualization tool for evaluating cell tracking algorithms. CellTrackVis allows comparing automatically generated cell tracks with ground truth data to help biologists select the best-suited algorithm for their experimented pipeline. Moreover, CellTackVis can be used as a debugging tool while developing a new cell tracking algorithm to investigate where, when, and why each tracking error occurred.
活细胞成像技术是生物学家用于分析细胞行为的一种常见数据采集技术。由于在视频序列中手动跟踪细胞极其耗时,在过去二十年中已开发出许多自动算法来完成这项任务。然而,这些算法在不同的采集条件(如细胞类型、采集设备、细胞处理方式)下均无法实现稳健的跟踪性能。虽然有许多可视化工具可用于辅助细胞行为分析,但尚无用于算法验证的工具。本文提出了CellTrackVis,这是一种用于评估细胞跟踪算法的新型可视化工具。CellTrackVis允许将自动生成的细胞轨迹与真实数据进行比较,以帮助生物学家为其实验流程选择最适合的算法。此外,在开发新的细胞跟踪算法时,CellTackVis可用作调试工具,以研究每个跟踪错误发生的位置、时间和原因。