Lin Mingquan, Liu Lei, Gorden Mae, Kass Michael, Van Tassel Sarah, Wang Fei, Peng Yifan
Weill Cornell Medicine, New York, NY, USA.
Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
Mach Learn Med Imaging. 2022 Sep;13583:436-445. doi: 10.1007/978-3-031-21014-3_45. Epub 2022 Dec 16.
Primary open-angle glaucoma (POAG) is one of the leading causes of irreversible blindness in the United States and worldwide. POAG prediction before onset plays an important role in early treatment. Although deep learning methods have been proposed to predict POAG, these methods mainly focus on current status prediction. In addition, all these methods used a single image as input. On the other hand, glaucoma specialists determine a glaucomatous eye by comparing the follow-up optic nerve image with the baseline along with supplementary clinical data. To simulate this process, we proposed a Multi-scale Multi-structure Siamese Network (MMSNet) to predict future POAG event from fundus photographs. The MMSNet consists of two side-outputs for deep supervision and 2D blocks to utilize two-dimensional features to assist classification. The MMSNet network was trained and evaluated on a large dataset: 37,339 fundus photographs from 1,636 Ocular Hypertension Treatment Study (OHTS) participants. Extensive experiments show that MMSNet outperforms the state-of-the-art on two "POAG prediction before onset" tasks. Our AUC are 0.9312 and 0.9507, which are 0.2204 and 0.1490 higher than the state-of-the-art, respectively. In addition, an ablation study is performed to check the contribution of different components. These results highlight the potential of deep learning to assist and enhance the prediction of future POAG event. The proposed network will be publicly available on https://github.com/bionlplab/MMSNet.
原发性开角型青光眼(POAG)是美国乃至全球不可逆性失明的主要原因之一。POAG发病前的预测对于早期治疗至关重要。尽管已经提出了深度学习方法来预测POAG,但这些方法主要侧重于当前状态的预测。此外,所有这些方法都将单张图像作为输入。另一方面,青光眼专家通过将随访的视神经图像与基线图像以及补充临床数据进行比较来判定青光眼性眼病。为了模拟这一过程,我们提出了一种多尺度多结构暹罗网络(MMSNet),用于从眼底照片预测未来的POAG事件。MMSNet由两个用于深度监督的侧输出和利用二维特征辅助分类的2D模块组成。MMSNet网络在一个大型数据集上进行了训练和评估:该数据集包含来自1636名眼压升高治疗研究(OHTS)参与者的37339张眼底照片。大量实验表明,MMSNet在两项“POAG发病前预测”任务上优于现有技术。我们的AUC分别为0.9312和0.9507,分别比现有技术高出0.2204和0.1490。此外,还进行了一项消融研究以检验不同组件的贡献。这些结果凸显了深度学习在辅助和增强未来POAG事件预测方面的潜力。所提出的网络将在https://github.com/bionlplab/MMSNet上公开提供。