Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY USA.
Department of Population Health Sciences, Weill Cornell Medicine, New York, NY USA.
AMIA Annu Symp Proc. 2022 Feb 21;2021:506-515. eCollection 2021.
Age-related macular degeneration (AMD) is the leading cause of vision loss. Some patients experience vision loss over a delayed timeframe, others at a rapid pace. Physicians analyze time-of-visit fundus photographs to predict patient risk of developing late-AMD, the most severe form of AMD. Our study hypothesizes that 1) incorporating historical data improves predictive strength of developing late-AMD and 2) state-of-the-art deep-learning techniques extract more predictive image features than clinicians do. We incorporate longitudinal data from the Age-Related Eye Disease Studies and deep-learning extracted image features in survival settings to predict development of late- AMD. To extract image features, we used multi-task learning frameworks to train convolutional neural networks. Our findings show 1) incorporating longitudinal data improves prediction of late-AMD for clinical standard features, but only the current visit is informative when using complex features and 2) "deep-features" are more informative than clinician derived features. We make codes publicly available at https://github.com/bionlplab/AMD_prognosis_amia2021.
年龄相关性黄斑变性(AMD)是导致视力丧失的主要原因。一些患者的视力损失是在延迟的时间内发生的,而另一些患者则是在短时间内发生的。医生通过分析就诊时的眼底照片来预测患者患晚期 AMD(AMD 最严重的形式)的风险。我们的研究假设:1)纳入历史数据可以提高预测晚期 AMD 发生的能力,2)最先进的深度学习技术可以提取比临床医生更多的预测性图像特征。我们将来自年龄相关性眼病研究的纵向数据和深度学习提取的图像特征纳入生存环境中,以预测晚期 AMD 的发生。为了提取图像特征,我们使用多任务学习框架来训练卷积神经网络。我们的研究结果表明:1)纳入纵向数据可以提高对临床标准特征的晚期 AMD 预测能力,但仅当前就诊时的信息对于使用复杂特征时是有意义的,2)“深度特征”比临床医生提取的特征更具信息量。我们在 https://github.com/bionlplab/AMD_prognosis_amia2021 上公开了代码。