Suppr超能文献

基于多任务深度学习的 AREDS 纵向数据晚期 AMD 预后分析。

Multi-task deep learning-based survival analysis on the prognosis of late AMD using the longitudinal data in AREDS.

机构信息

Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY USA.

Department of Population Health Sciences, Weill Cornell Medicine, New York, NY USA.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:506-515. eCollection 2021.

Abstract

Age-related macular degeneration (AMD) is the leading cause of vision loss. Some patients experience vision loss over a delayed timeframe, others at a rapid pace. Physicians analyze time-of-visit fundus photographs to predict patient risk of developing late-AMD, the most severe form of AMD. Our study hypothesizes that 1) incorporating historical data improves predictive strength of developing late-AMD and 2) state-of-the-art deep-learning techniques extract more predictive image features than clinicians do. We incorporate longitudinal data from the Age-Related Eye Disease Studies and deep-learning extracted image features in survival settings to predict development of late- AMD. To extract image features, we used multi-task learning frameworks to train convolutional neural networks. Our findings show 1) incorporating longitudinal data improves prediction of late-AMD for clinical standard features, but only the current visit is informative when using complex features and 2) "deep-features" are more informative than clinician derived features. We make codes publicly available at https://github.com/bionlplab/AMD_prognosis_amia2021.

摘要

年龄相关性黄斑变性(AMD)是导致视力丧失的主要原因。一些患者的视力损失是在延迟的时间内发生的,而另一些患者则是在短时间内发生的。医生通过分析就诊时的眼底照片来预测患者患晚期 AMD(AMD 最严重的形式)的风险。我们的研究假设:1)纳入历史数据可以提高预测晚期 AMD 发生的能力,2)最先进的深度学习技术可以提取比临床医生更多的预测性图像特征。我们将来自年龄相关性眼病研究的纵向数据和深度学习提取的图像特征纳入生存环境中,以预测晚期 AMD 的发生。为了提取图像特征,我们使用多任务学习框架来训练卷积神经网络。我们的研究结果表明:1)纳入纵向数据可以提高对临床标准特征的晚期 AMD 预测能力,但仅当前就诊时的信息对于使用复杂特征时是有意义的,2)“深度特征”比临床医生提取的特征更具信息量。我们在 https://github.com/bionlplab/AMD_prognosis_amia2021 上公开了代码。

相似文献

2
Predicting Age-related Macular Degeneration Progression with Longitudinal Fundus Images Using Deep Learning.
Mach Learn Med Imaging. 2022 Sep;13583:11-20. doi: 10.1007/978-3-031-21014-3_2. Epub 2022 Dec 16.
6
Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus Images.
Ophthalmol Retina. 2022 Feb;6(2):116-129. doi: 10.1016/j.oret.2021.06.010. Epub 2021 Jul 2.
7
A New and Improved Method for Automated Screening of Age-Related Macular Degeneration Using Ensemble Deep Neural Networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:702-705. doi: 10.1109/EMBC.2018.8512379.
10
Age-related Macular Degeneration: Nutrition, Genes and Deep Learning-The LXXVI Edward Jackson Memorial Lecture.
Am J Ophthalmol. 2020 Sep;217:335-347. doi: 10.1016/j.ajo.2020.05.042. Epub 2020 Jun 20.

引用本文的文献

3
Multitask Learning for Activity Detection in Neovascular Age-Related Macular Degeneration.
Transl Vis Sci Technol. 2023 Apr 3;12(4):12. doi: 10.1167/tvst.12.4.12.
4
Multi-scale Multi-structure Siamese Network (MMSNet) for Primary Open-Angle Glaucoma Prediction.
Mach Learn Med Imaging. 2022 Sep;13583:436-445. doi: 10.1007/978-3-031-21014-3_45. Epub 2022 Dec 16.
5
Predicting Age-related Macular Degeneration Progression with Longitudinal Fundus Images Using Deep Learning.
Mach Learn Med Imaging. 2022 Sep;13583:11-20. doi: 10.1007/978-3-031-21014-3_2. Epub 2022 Dec 16.

本文引用的文献

1
Novel coronavirus (COVID-19) diagnosis using computer vision and artificial intelligence techniques: a review.
Multimed Tools Appl. 2021;80(13):19931-19946. doi: 10.1007/s11042-021-10714-5. Epub 2021 Mar 3.
2
Predicting risk of late age-related macular degeneration using deep learning.
NPJ Digit Med. 2020 Aug 27;3:111. doi: 10.1038/s41746-020-00317-z. eCollection 2020.
3
Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms.
Clin Exp Ophthalmol. 2020 Nov;48(8):1043-1056. doi: 10.1111/ceo.13834. Epub 2020 Aug 17.
4
Regional differences in the global burden of age-related macular degeneration.
BMC Public Health. 2020 Mar 30;20(1):410. doi: 10.1186/s12889-020-8445-y.
5
A Deep Learning Approach for Automated Detection of Geographic Atrophy from Color Fundus Photographs.
Ophthalmology. 2019 Nov;126(11):1533-1540. doi: 10.1016/j.ophtha.2019.06.005. Epub 2019 Jun 11.
6
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images.
Nat Med. 2019 Aug;25(8):1301-1309. doi: 10.1038/s41591-019-0508-1. Epub 2019 Jul 15.
7
A multi-task deep learning model for the classification of Age-related Macular Degeneration.
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:505-514. eCollection 2019.
10
Leading causes of certifiable visual loss in England and Wales during the year ending 31 March 2013.
Eye (Lond). 2016 Apr;30(4):602-7. doi: 10.1038/eye.2015.288. Epub 2016 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验