Suppr超能文献

富电子铋纳米片促进CO·形成以实现高性能和pH通用的电催化CO还原

Electron-Rich Bi Nanosheets Promote CO ⋅ Formation for High-Performance and pH-Universal Electrocatalytic CO Reduction.

作者信息

Li Zaiqi, Sun Bin, Xiao Difei, Wang Zeyan, Liu Yuanyuan, Zheng Zhaoke, Wang Peng, Dai Ying, Cheng Hefeng, Huang Baibiao

机构信息

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China.

School of Physics, Shandong University, Jinan, 250100, China.

出版信息

Angew Chem Int Ed Engl. 2023 Mar 6;62(11):e202217569. doi: 10.1002/anie.202217569. Epub 2023 Feb 6.

Abstract

Electrochemical CO reduction reaction (CO RR) to chemical fuels such as formate offers a promising pathway to carbon-neutral future, but its practical application is largely inhibited by the lack of effective activation of CO molecules and pH-universal feasibility. Here, we report an electronic structure manipulation strategy to electron-rich Bi nanosheets, where electrons transfer from Cu donor to Bi acceptor in bimetallic Cu-Bi, enabling CO RR towards formate with concurrent high activity, selectivity and stability in pH-universal (acidic, neutral and alkaline) electrolytes. Combined in situ Raman spectra and computational calculations unravel that electron-rich Bi promotes CO ⋅ formation to activate CO molecules, and enhance the adsorption strength of *OCHO intermediate with an up-shifted p-band center, thus leading to its superior activity and selectivity of formate. Further integration of the robust electron-rich Bi nanosheets into III-V-based photovoltaic solar cell results in an unassisted artificial leaf with a high solar-to-formate (STF) efficiency of 13.7 %.

摘要

将电化学一氧化碳还原反应(CO RR)转化为诸如甲酸盐等化学燃料,为通向碳中和未来提供了一条充满前景的途径,但其实际应用在很大程度上受到CO分子缺乏有效活化以及pH通用可行性的限制。在此,我们报道了一种针对富电子铋纳米片的电子结构调控策略,在双金属Cu-Bi中,电子从Cu供体转移至Bi受体,使得CO RR能够在pH通用(酸性、中性和碱性)电解质中同时实现高活性、高选择性和高稳定性地生成甲酸盐。结合原位拉曼光谱和计算计算结果表明,富电子的Bi促进CO⋅的形成以活化CO分子,并通过p带中心上移增强*OCHO中间体的吸附强度,从而使其具有优异的甲酸盐活性和选择性。将坚固的富电子铋纳米片进一步集成到基于III-V族的光伏太阳能电池中,得到了一种无辅助的人工叶片,其太阳能到甲酸盐(STF)的效率高达13.7%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验