Institute of High-Performance Computing, Agency for Science, Technology, and Research (A-STAR), Fusionopolis, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore.
Sci Rep. 2023 Jan 19;13(1):1078. doi: 10.1038/s41598-022-25613-4.
Optical mode solving is of paramount importance in photonic design and discovery. In this paper we propose a deep deconvolutional neural network architecture for a meshless, and resolution scalable optical mode calculations. The solution is arbitrary in wavelengths and applicable for a wide range of photonic materials and dimensions. The deconvolutional model consists of two stages: the first stage projects the photonic geometrical parameters to a vector in a higher dimensional space, and the second stage deconvolves the vector into a mode image with the help of scaling blocks. Scaling block can be added or subtracted as per desired resolution in the final mode image, and it can be effectively trained using a transfer learning approach. Being a deep learning model, it is light, portable, and capable of rapidly disseminating edge computing ready solutions. Without the loss of generality, we illustrate the method for an optical channel waveguide, and readily generalizable for wide range photonic components including photonic crystals, optical cavities and metasurfaces.
在光子设计和发现中,光模式求解至关重要。在本文中,我们提出了一种用于无网格和分辨率可扩展的光学模式计算的深度去卷积神经网络架构。该解决方案在波长上是任意的,适用于广泛的光子材料和尺寸。去卷积模型由两个阶段组成:第一阶段将光子几何参数投影到高维空间中的向量,第二阶段借助缩放块将向量解卷积为模式图像。可以根据最终模式图像中的所需分辨率添加或减去缩放块,并且可以使用迁移学习方法有效地对其进行训练。作为深度学习模型,它很轻便,可移植,并且能够快速传播边缘计算就绪的解决方案。不失一般性,我们以光学通道波导为例来说明该方法,并且可以广泛应用于各种光子组件,包括光子晶体、光学腔和超表面。