Suppr超能文献

通过将活动记录仪得出的静息-活动及睡眠参数与常规临床数据相结合对晚期癌症进行预后评估:一项探索性机器学习研究

Prognostication in Advanced Cancer by Combining Actigraphy-Derived Rest-Activity and Sleep Parameters with Routine Clinical Data: An Exploratory Machine Learning Study.

作者信息

Patel Shuchita Dhwiren, Davies Andrew, Laing Emma, Wu Huihai, Mendis Jeewaka, Dijk Derk-Jan

机构信息

Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK.

Trinity College Dublin, University College Dublin and Our Lady's Hospice, DRW RY72 Dublin, Ireland.

出版信息

Cancers (Basel). 2023 Jan 13;15(2):503. doi: 10.3390/cancers15020503.

Abstract

Survival prediction is integral to oncology and palliative care, yet robust prognostic models remain elusive. We assessed the feasibility of combining actigraphy, sleep diary data, and routine clinical parameters to prognosticate. Fifty adult outpatients with advanced cancer and estimated prognosis of <1 year were recruited. Patients were required to wear an Actiwatch® (wrist actigraph) for 8 days, and complete a sleep diary. Univariate and regularised multivariate regression methods were used to identify predictors from 66 variables and construct predictive models of survival. A total of 49 patients completed the study, and 34 patients died within 1 year. Forty-two patients had disrupted rest-activity rhythms (dichotomy index (I < O ≤ 97.5%) but I < O did not have prognostic value in univariate analyses. The Lasso regularised derived algorithm was optimal and able to differentiate participants with shorter/longer survival (log rank p < 0.0001). Predictors associated with increased survival time were: time of awakening sleep efficiency, subjective sleep quality, clinician’s estimate of survival and global health status score, and haemoglobin. A shorter survival time was associated with self-reported sleep disturbance, neutrophil count, serum urea, creatinine, and C-reactive protein. Applying machine learning to actigraphy and sleep data combined with routine clinical data is a promising approach for the development of prognostic tools.

摘要

生存预测是肿瘤学和姑息治疗的重要组成部分,但强大的预后模型仍然难以捉摸。我们评估了结合活动记录仪、睡眠日记数据和常规临床参数进行预后预测的可行性。招募了50名成年晚期癌症门诊患者,预计预后小于1年。患者被要求佩戴Actiwatch®(腕部活动记录仪)8天,并完成一份睡眠日记。使用单变量和正则化多变量回归方法从66个变量中识别预测因素,并构建生存预测模型。共有49名患者完成了研究,34名患者在1年内死亡。42名患者的休息-活动节律紊乱(二分指数(I < O ≤ 97.5%),但I < O在单变量分析中没有预后价值。套索正则化衍生算法是最优的,能够区分生存时间较短/较长的参与者(对数秩检验p < 0.0001)。与生存时间增加相关的预测因素包括:觉醒时间、睡眠效率、主观睡眠质量、临床医生对生存的估计和整体健康状况评分以及血红蛋白。较短的生存时间与自我报告的睡眠障碍、中性粒细胞计数、血清尿素、肌酐和C反应蛋白有关。将机器学习应用于活动记录仪和睡眠数据,并结合常规临床数据,是开发预后工具的一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c24/9856985/a5ced6a2e14f/cancers-15-00503-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验