Suppr超能文献

一种使用深度强化学习在自动驾驶车辆中检测夜间行人的概念性多层框架。

A Conceptual Multi-Layer Framework for the Detection of Nighttime Pedestrian in Autonomous Vehicles Using Deep Reinforcement Learning.

作者信息

Farooq Muhammad Shoaib, Khalid Haris, Arooj Ansif, Umer Tariq, Asghar Aamer Bilal, Rasheed Jawad, Shubair Raed M, Yahyaoui Amani

机构信息

Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore 54000, Pakistan.

Department of Information Sciences, Division of Science and Technology, University of Education, Lahore 54000, Pakistan.

出版信息

Entropy (Basel). 2023 Jan 9;25(1):135. doi: 10.3390/e25010135.

Abstract

The major challenge faced by autonomous vehicles today is driving through busy roads without getting into an accident, especially with a pedestrian. To avoid collision with pedestrians, the vehicle requires the ability to communicate with a pedestrian to understand their actions. The most challenging task in research on computer vision is to detect pedestrian activities, especially at nighttime. The Advanced Driver-Assistance Systems (ADAS) has been developed for driving and parking support for vehicles to visualize sense, send and receive information from the environment but it lacks to detect nighttime pedestrian actions. This article proposes a framework based on Deep Reinforcement Learning (DRL) using Scale Invariant Faster Region-based Convolutional Neural Networks (SIFRCNN) technologies to efficiently detect pedestrian operations through which the vehicle, as agents train themselves from the environment and are forced to maximize the reward. The SIFRCNN has reduced the running time of detecting pedestrian operations from road images by incorporating Region Proposal Network (RPN) computation. Furthermore, we have used Reinforcement Learning (RL) for optimizing the Q-values and training itself to maximize the reward after getting the state from the SIFRCNN. In addition, the latest incarnation of SIFRCNN achieves near-real-time object detection from road images. The proposed SIFRCNN has been tested on KAIST, City Person, and Caltech datasets. The experimental results show an average improvement of 2.3% miss rate of pedestrian detection at nighttime compared to the other CNN-based pedestrian detectors.

摘要

如今,自动驾驶车辆面临的主要挑战是在繁忙道路上行驶而不发生事故,尤其是与行人发生碰撞。为了避免与行人碰撞,车辆需要具备与行人通信以了解其行为的能力。计算机视觉研究中最具挑战性的任务是检测行人活动,尤其是在夜间。先进驾驶辅助系统(ADAS)已被开发用于车辆的驾驶和停车支持,以实现感知可视化、从环境中发送和接收信息,但它缺乏检测夜间行人行为的能力。本文提出了一种基于深度强化学习(DRL)的框架,使用尺度不变快速区域卷积神经网络(SIFRCNN)技术来有效检测行人操作,通过该操作,车辆作为智能体从环境中自我训练并被迫最大化奖励。SIFRCNN通过合并区域建议网络(RPN)计算,减少了从道路图像中检测行人操作的运行时间。此外,我们使用强化学习(RL)来优化Q值,并在从SIFRCNN获得状态后自我训练以最大化奖励。此外,SIFRCNN的最新版本实现了从道路图像中近乎实时的目标检测。所提出的SIFRCNN已在KAIST、City Person和加州理工学院数据集上进行了测试。实验结果表明,与其他基于卷积神经网络的行人检测器相比,夜间行人检测的漏检率平均提高了2.3%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2d/9858197/fd2379260200/entropy-25-00135-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验