Suppr超能文献

复杂场景下智能车辆的行人检测算法。

Pedestrian Detection Algorithm for Intelligent Vehicles in Complex Scenarios.

机构信息

State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China.

Taizhou Automobile Power Transmission Research Institute, Jilin University, Taizhou 225322, China.

出版信息

Sensors (Basel). 2020 Jun 29;20(13):3646. doi: 10.3390/s20133646.

Abstract

Pedestrian detection is an important aspect of the development of intelligent vehicles. To address problems in which traditional pedestrian detection is susceptible to environmental factors and are unable to meet the requirements of accuracy in real time, this study proposes a pedestrian detection algorithm for intelligent vehicles in complex scenarios. YOLOv3 is one of the deep learning-based object detection algorithms with good performance at present. In this article, the basic principle of YOLOv3 is elaborated and analyzed firstly to determine its limitations in pedestrian detection. Then, on the basis of the original YOLOv3 network model, many improvements are made, including modifying grid cell size, adopting improved k-means clustering algorithm, improving multi-scale bounding box prediction based on receptive field, and using Soft-NMS algorithm. Finally, based on INRIA person and PASCAL VOC 2012 datasets, pedestrian detection experiments are conducted to test the performance of the algorithm in various complex scenarios. The experimental results show that the mean Average Precision (mAP) value reaches 90.42%, and the average processing time of each frame is 9.6 ms. Compared with other detection algorithms, the proposed algorithm exhibits accuracy and real-time performance together, good robustness and anti-interference ability in complex scenarios, strong generalization ability, high network stability, and detection accuracy and detection speed have been markedly improved. Such improvements are significant in protecting the road safety of pedestrians and reducing traffic accidents, and are conducive to ensuring the steady development of the technological level of intelligent vehicle driving assistance.

摘要

行人检测是智能车辆发展的一个重要方面。针对传统行人检测易受环境因素影响且无法满足实时性精度要求的问题,本研究提出了一种复杂场景下智能车辆的行人检测算法。YOLOv3 是目前性能较好的基于深度学习的目标检测算法之一。本文首先阐述和分析了 YOLOv3 的基本原理,以确定其在行人检测中的局限性。然后,在原始 YOLOv3 网络模型的基础上,进行了许多改进,包括修改网格单元大小、采用改进的 K-means 聚类算法、改进基于感受野的多尺度边界框预测以及使用 Soft-NMS 算法。最后,基于 INRIA 行人数据集和 PASCAL VOC 2012 数据集,进行了行人检测实验,以测试算法在各种复杂场景下的性能。实验结果表明,平均精度(mAP)值达到 90.42%,每帧的平均处理时间为 9.6ms。与其他检测算法相比,所提出的算法在复杂场景下具有准确性和实时性、良好的鲁棒性和抗干扰能力、较强的泛化能力、较高的网络稳定性以及显著提高的检测精度和检测速度。这些改进对于保护行人道路安全、减少交通事故、确保智能车辆驾驶辅助技术水平的稳步发展具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d048/7374403/fadb26d7c8ba/sensors-20-03646-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验