Suppr超能文献

基于实时人工智能的增强可视化结直肠息肉组织学分类。

Real-time artificial intelligence-based histologic classification of colorectal polyps with augmented visualization.

机构信息

Research Service, VA Boston Healthcare System, Boston, MA; Department of Biomedical Engineering, Boston University College of Engineering, Boston, MA.

Department of Medicine, Section of Gastroenterology, VA Boston Healthcare System, Boston, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.

出版信息

Gastrointest Endosc. 2021 Mar;93(3):662-670. doi: 10.1016/j.gie.2020.09.018. Epub 2020 Sep 16.

Abstract

BACKGROUND AND AIMS

Artificial intelligence (AI)-based computer-aided diagnostic (CADx) algorithms are a promising approach for real-time histology (RTH) of colonic polyps. Our aim is to present a novel in situ CADx approach that seeks to increase transparency and interpretability of results by generating an intuitive augmented visualization of the model's predicted histology over the polyp surface.

METHODS

We developed a deep learning model using semantic segmentation to delineate polyp boundaries and a deep learning model to classify subregions within the segmented polyp. These subregions were classified independently and were subsequently aggregated to generate a histology map of the polyp's surface. We used 740 high-magnification narrow-band images from 607 polyps in 286 patients and over 65,000 subregions to train and validate the model.

RESULTS

The model achieved a sensitivity of .96, specificity of .84, negative predictive value (NPV) of .91, and high-confidence rate (HCR) of .88, distinguishing 171 neoplastic polyps from 83 non-neoplastic polyps of all sizes. Among 93 neoplastic and 75 non-neoplastic polyps ≤5 mm, the model achieved a sensitivity of .95, specificity of .84, NPV of .91, and HCR of .86.

CONCLUSIONS

The CADx model is capable of accurately distinguishing neoplastic from non-neoplastic polyps and provides a histology map of the spatial distribution of localized histologic predictions along the delineated polyp surface. This capability may improve interpretability and transparency of AI-based RTH and offer intuitive, accurate, and user-friendly guidance in real time for the clinical management and documentation of optical histology results.

摘要

背景与目的

基于人工智能(AI)的计算机辅助诊断(CADx)算法是实时结肠息肉组织学(RTH)的一种很有前途的方法。我们的目的是提出一种新的原位 CADx 方法,通过对模型预测的息肉表面组织学进行直观的增强可视化,从而提高结果的透明度和可解释性。

方法

我们使用语义分割开发了一种深度学习模型来描绘息肉边界,并用一种深度学习模型来对分割后的息肉内的子区域进行分类。这些子区域独立分类,然后聚合以生成息肉表面的组织学图。我们使用 65,000 多个子区域和 607 例患者的 740 个高倍窄带图像来训练和验证模型。

结果

该模型的灵敏度为.96,特异性为.84,阴性预测值(NPV)为.91,高置信率(HCR)为.88,能够区分 171 个肿瘤性息肉和 83 个各种大小的非肿瘤性息肉。在 93 个肿瘤性和 75 个≤5mm 的非肿瘤性息肉中,该模型的灵敏度为.95,特异性为.84,NPV 为.91,HCR 为.86。

结论

CADx 模型能够准确地区分肿瘤性和非肿瘤性息肉,并提供沿着描绘的息肉表面的局部组织学预测的空间分布的组织学图。这种能力可能会提高基于 AI 的 RTH 的可解释性和透明度,并为光学组织学结果的临床管理和记录提供直观、准确和用户友好的实时指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验