Suppr超能文献

普雷沃氏菌属:瘤胃代谢中的关键参与者。

Prevotella: A Key Player in Ruminal Metabolism.

作者信息

Betancur-Murillo Claudia Lorena, Aguilar-Marín Sandra Bibiana, Jovel Juan

机构信息

Escuela de Ciencias Básicas, Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, UNAD, Bogotá 111511, Colombia.

Facultad de Ciencias Agropecuarias, Universidad de Caldas, Manizales 170004, Colombia.

出版信息

Microorganisms. 2022 Dec 20;11(1):1. doi: 10.3390/microorganisms11010001.

Abstract

Ruminants are foregut fermenters that have the remarkable ability of converting plant polymers that are indigestible to humans into assimilable comestibles like meat and milk, which are cornerstones of human nutrition. Ruminants establish a symbiotic relationship with their microbiome, and the latter is the workhorse of carbohydrate fermentation. On the other hand, during carbohydrate fermentation, synthesis of propionate sequesters H, thus reducing its availability for the ultimate production of methane (CH4) by methanogenic archaea. Biochemically, methane is the simplest alkane and represents a downturn in energetic efficiency in ruminants; environmentally, it constitutes a potent greenhouse gas that negatively affects climate change. is a very versatile microbe capable of processing a wide range of proteins and polysaccharides, and one of its fermentation products is propionate, a trait that appears conspicuous in strain 23. Since propionate, but not acetate or butyrate, constitutes an H sink, propionate-producing microbes have the potential to reduce methane production. Accordingly, numerous studies suggest that members of the genus have the ability to divert the hydrogen flow in glycolysis away from methanogenesis and in favor of propionic acid production. Intended for a broad audience in microbiology, our review summarizes the biochemistry of carbohydrate fermentation and subsequently discusses the evidence supporting the essential role of in lignocellulose processing and its association with reduced methane emissions. We hope this article will serve as an introduction to novice researchers and as an update to others more conversant with the topic.

摘要

反刍动物是前肠发酵者,具有将人类难以消化的植物聚合物转化为可同化的食物(如肉类和奶类,它们是人类营养的基石)的非凡能力。反刍动物与其微生物群建立了共生关系,而后者是碳水化合物发酵的主力军。另一方面,在碳水化合物发酵过程中,丙酸的合成会隔离氢,从而降低其被产甲烷古菌最终用于生成甲烷(CH4)的可用性。从生物化学角度来看,甲烷是最简单的烷烃,代表反刍动物能量利用效率的降低;从环境角度来看,它是一种强效温室气体,对气候变化产生负面影响。[微生物名称]是一种非常通用的微生物,能够处理多种蛋白质和多糖,其发酵产物之一是丙酸,这一特性在[微生物名称]23菌株中表现明显。由于丙酸而非乙酸或丁酸构成了氢汇,产丙酸的微生物具有减少甲烷生成的潜力。因此,众多研究表明,[微生物名称]属的成员有能力使糖酵解中的氢流从甲烷生成转向有利于丙酸生成。我们的综述面向微生物学领域的广大读者,总结了碳水化合物发酵的生物化学过程,随后讨论了支持[微生物名称]在木质纤维素加工中的重要作用及其与减少甲烷排放之间关联的证据。我们希望本文能为[微生物名称]研究新手提供入门介绍,并为更熟悉该主题的其他人提供最新信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67fc/9866204/4c57ff682a7a/microorganisms-11-00001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验