Suppr超能文献

用于息肉分割的动态频率解耦细化网络

Dynamic Frequency-Decoupled Refinement Network for Polyp Segmentation.

作者信息

Tong Yao, Chai Jingxian, Chen Ziqi, Zhou Zuojian, Hu Yun, Li Xin, Qiao Xuebin, Hu Kongfa

机构信息

School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China.

Jiangsu Province Engineering Research Center of TCM Intelligence Health Service, Nanjing University of Chinese Medicine, Nanjing 210023, China.

出版信息

Bioengineering (Basel). 2025 Mar 11;12(3):277. doi: 10.3390/bioengineering12030277.

Abstract

Polyp segmentation is crucial for early colorectal cancer detection, but accurately delineating polyps is challenging due to their variations in size, shape, and texture and low contrast with surrounding tissues. Existing methods often rely solely on spatial-domain processing, which struggles to separate high-frequency features (edges, textures) from low-frequency ones (global structures), leading to suboptimal segmentation performance. We propose the Dynamic Frequency-Decoupled Refinement Network (DFDRNet), a novel segmentation framework that integrates frequency-domain and spatial-domain processing. DFDRNet introduces the Frequency Adaptive Decoupling (FAD) module, which dynamically separates high- and low-frequency components, and the Frequency Adaptive Refinement (FAR) module, which refines these components before fusing them with spatial features to enhance segmentation accuracy. Embedded within a U-shaped encoder-decoder framework, DFDRNet achieves state-of-the-art performance across three benchmark datasets, demonstrating superior robustness and efficiency. Our extensive evaluations and ablation studies confirm the effectiveness of DFDRNet in balancing segmentation accuracy with computational efficiency.

摘要

息肉分割对于早期结直肠癌检测至关重要,但由于息肉在大小、形状和纹理上的变化以及与周围组织的低对比度,准确勾勒息肉具有挑战性。现有方法通常仅依赖空间域处理,难以将高频特征(边缘、纹理)与低频特征(全局结构)分离,导致分割性能欠佳。我们提出了动态频率解耦细化网络(DFDRNet),这是一种集成了频域和空间域处理的新型分割框架。DFDRNet引入了频率自适应解耦(FAD)模块,该模块动态分离高频和低频分量,以及频率自适应细化(FAR)模块,该模块在将这些分量与空间特征融合之前对其进行细化,以提高分割精度。DFDRNet嵌入在U形编码器 - 解码器框架中,在三个基准数据集上实现了领先的性能,展示了卓越的鲁棒性和效率。我们广泛的评估和消融研究证实了DFDRNet在平衡分割精度与计算效率方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06f3/11939780/db6d20f89f8d/bioengineering-12-00277-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验