Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Neuroscience Research Center, Berlin 10117, Germany.
Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main 60528, Germany.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2312281120. doi: 10.1073/pnas.2312281120. Epub 2024 Jan 30.
The hippocampal formation is crucial for learning and memory, with submodule CA3 thought to be the substrate of pattern completion. However, the underlying synaptic and computational mechanisms of this network are not well understood. Here, we perform circuit reconstruction of a CA3 module using three dimensional (3D) electron microscopy data and combine this with functional connectivity recordings and computational simulations to determine possible CA3 network mechanisms. Direct measurements of connectivity schemes with both physiological measurements and structural 3D EM revealed a high connectivity rate, multi-fold higher than previously assumed. Mathematical modelling indicated that such CA3 networks can robustly generate pattern completion and replay memory sequences. In conclusion, our data demonstrate that the connectivity scheme of the hippocampal submodule is well suited for efficient memory storage and retrieval.
海马结构对于学习和记忆至关重要,其中 CA3 亚区被认为是模式完成的基础。然而,这个网络的潜在突触和计算机制还不是很清楚。在这里,我们使用三维(3D)电子显微镜数据对 CA3 模块进行电路重建,并将其与功能连接记录和计算模拟相结合,以确定可能的 CA3 网络机制。通过生理测量和结构 3D EM 的直接测量,揭示了连接方案的高连接率,比以前假设的高出数倍。数学模型表明,这样的 CA3 网络可以稳健地产生模式完成和回放记忆序列。总之,我们的数据表明,海马亚区的连接方案非常适合高效的记忆存储和检索。