Suppr超能文献

使用基于非侵入性阻抗的方法对生物膜形成进行实时监测。

Real-Time Monitoring of Biofilm Formation Using a Noninvasive Impedance-Based Method.

作者信息

Kumar Sriram, Nguyen Anh Tuan, Goswami Subir, Ferracane Jack, Koley Dipankar

机构信息

Department of Chemistry, Oregon State University, Corvallis, OR, USA.

Department of Restorative Dentistry, Oregon Health & Science University, Portland, OR, USA.

出版信息

Sens Actuators B Chem. 2023 Feb 1;376(Pt A). doi: 10.1016/j.snb.2022.133034. Epub 2022 Nov 22.

Abstract

Biofilms are complex three-dimensional microbial communities that adhere to a variety of surfaces and interact with their surroundings. Because of the dynamic nature of biofilm formation, establishing a uniform technique for quantifying and monitoring biofilm volume, shape, and features in real-time is challenging. Herein, we describe a noninvasive electrochemical impedance approach for real-time monitoring of dental plaque-derived multispecies biofilm growth on a range of substrates. A working equation relating electrochemical impedance to live biofilm volume has been developed that is applicable to all three surfaces examined, including glass, dental filling resin, and Ca-releasing resin composites. Impedance changes of 2.5, 35, 50, and 65% correlated to biofilm volumes of 0.10 ± 0.01, 16.9 ± 2.2, 29.7 ± 2.3, and 38.6 ± 2.8 μm/μm, respectively. We discovered that glass, dental filling resin, and Ca-releasing dental composites required approximately 3.5, 4.5, and 6 days, respectively, to achieve a 50% change in impedance. The local pH change at the biofilm-substrate interfaces also monitored with potentiometry pH microsensor, and pH change varied according to biofilm volume. This impedance-based technique can be a useful analytical method for monitoring the growth of biofilms on a variety of substrates in real-time. Therefore, this technique may be beneficial for examining antibacterial properties of novel biomaterials.

摘要

生物膜是复杂的三维微生物群落,它们附着在各种表面上并与周围环境相互作用。由于生物膜形成的动态性质,建立一种用于实时定量和监测生物膜体积、形状及特征的统一技术具有挑战性。在此,我们描述了一种非侵入性电化学阻抗方法,用于实时监测一系列底物上牙菌斑来源的多物种生物膜生长。已开发出一个将电化学阻抗与活生物膜体积相关联的工作方程,该方程适用于所研究的所有三种表面,包括玻璃、牙科填充树脂和钙释放树脂复合材料。阻抗变化2.5%、35%、50%和65%分别对应生物膜体积0.10±0.01、16.9±2.2、29.7±2.3和38.6±2.8μm/μm。我们发现,玻璃、牙科填充树脂和钙释放牙科复合材料分别需要约3.5天、4.5天和6天才能实现阻抗50%的变化。还使用电位pH微传感器监测了生物膜-底物界面处的局部pH变化,pH变化随生物膜体积而变化。这种基于阻抗的技术可以成为实时监测各种底物上生物膜生长的有用分析方法。因此,该技术可能有助于研究新型生物材料的抗菌性能。

相似文献

1
Real-Time Monitoring of Biofilm Formation Using a Noninvasive Impedance-Based Method.
Sens Actuators B Chem. 2023 Feb 1;376(Pt A). doi: 10.1016/j.snb.2022.133034. Epub 2022 Nov 22.
2
Real-time monitoring of the pH microenvironment at the interface of multispecies biofilm and dental composites.
Anal Chim Acta. 2022 Apr 8;1201:339589. doi: 10.1016/j.aca.2022.339589. Epub 2022 Feb 14.
3
A Chemical Approach to Optimizing Bioactive Glass Dental Composites.
J Dent Res. 2019 Feb;98(2):194-199. doi: 10.1177/0022034518809086. Epub 2018 Nov 21.
4
Three-dimensional biofilm properties on dental bonding agent with varying quaternary ammonium charge densities.
J Dent. 2016 Oct;53:73-81. doi: 10.1016/j.jdent.2016.07.014. Epub 2016 Jul 26.
6
Biofilm formation on dental restorative and implant materials.
J Dent Res. 2010 Jul;89(7):657-65. doi: 10.1177/0022034510368644. Epub 2010 May 6.
8
Monitoring biofilm growth and dispersal in real-time with impedance biosensors.
J Ind Microbiol Biotechnol. 2023 Feb 17;50(1). doi: 10.1093/jimb/kuad022.
9
Flexible Platform for In Situ Impedimetric Detection and Bioelectric Effect Treatment of Escherichia Coli Biofilms.
IEEE Trans Biomed Eng. 2019 May;66(5):1337-1345. doi: 10.1109/TBME.2018.2872896. Epub 2018 Oct 1.
10

引用本文的文献

2
Alum sludge-driven electro-phytoremediation in constructed wetlands: a novel approach for sustainable nutrient removal.
RSC Adv. 2025 Jan 29;15(4):2947-2957. doi: 10.1039/d4ra08021a. eCollection 2025 Jan 23.
3
Classical and Modern Models for Biofilm Studies: A Comprehensive Review.
Antibiotics (Basel). 2024 Dec 18;13(12):1228. doi: 10.3390/antibiotics13121228.
4
Dental biofilm acidogenicity induced by pediatric oral medications: a double-blind randomized clinical trial.
Braz Oral Res. 2024 Nov 8;38:e107. doi: 10.1590/1807-3107bor-2024.vol38.0107. eCollection 2024.
5
Triple-function carbon-based Ca ion-selective pH ring microelectrode to study real-time bacteria-mediated hydroxyapatite corrosion.
Anal Chim Acta. 2024 Sep 8;1321:343042. doi: 10.1016/j.aca.2024.343042. Epub 2024 Jul 31.
6
Real-time biofilm detection techniques: advances and applications.
Future Microbiol. 2024;19(11):1003-1016. doi: 10.1080/17460913.2024.2350285. Epub 2024 Jun 21.
7
New-generation biofilm effective antimicrobial peptides and a real-time anti-biofilm activity assay: CoMIC.
Appl Microbiol Biotechnol. 2024 May 3;108(1):316. doi: 10.1007/s00253-024-13134-1.
8
A graphene microelectrode array based microfluidic device for continuous monitoring of biofilms.
Nanoscale Adv. 2023 Aug 11;5(18):4681-4686. doi: 10.1039/d3na00482a. eCollection 2023 Sep 12.

本文引用的文献

1
Real-time monitoring of the pH microenvironment at the interface of multispecies biofilm and dental composites.
Anal Chim Acta. 2022 Apr 8;1201:339589. doi: 10.1016/j.aca.2022.339589. Epub 2022 Feb 14.
2
Recent advances on the spectroscopic characterization of microbial biofilms: A critical review.
Anal Chim Acta. 2022 Feb 22;1195:339433. doi: 10.1016/j.aca.2022.339433. Epub 2022 Jan 4.
3
Microsystems for biofilm characterization and sensing - A review.
Biofilm. 2019 Dec 18;2:100015. doi: 10.1016/j.bioflm.2019.100015. eCollection 2020 Dec.
4
Microscopy Methods for Biofilm Imaging: Focus on SEM and VP-SEM Pros and Cons.
Biology (Basel). 2021 Jan 12;10(1):51. doi: 10.3390/biology10010051.
5
Bacterial Sensing and Biofilm Monitoring for Infection Diagnostics.
Macromol Biosci. 2020 Nov;20(11):e2000129. doi: 10.1002/mabi.202000129. Epub 2020 Jun 26.
7
Beyond Risk: Bacterial Biofilms and Their Regulating Approaches.
Front Microbiol. 2020 May 21;11:928. doi: 10.3389/fmicb.2020.00928. eCollection 2020.
8
Measuring Streptococcus mutans, Streptococcus sanguinis and Candida albicans biofilm formation using a real-time impedance-based system.
J Microbiol Methods. 2020 Feb;169:105815. doi: 10.1016/j.mimet.2019.105815. Epub 2019 Dec 20.
9
Sensing the unreachable: challenges and opportunities in biofilm detection.
Curr Opin Biotechnol. 2020 Aug;64:79-84. doi: 10.1016/j.copbio.2019.10.009. Epub 2019 Nov 22.
10
Probing the Impedance of a Biological Tissue with PEDOT:PSS-Coated Metal Electrodes: Effect of Electrode Size on Sensing Efficiency.
Adv Healthc Mater. 2019 Dec;8(23):e1901215. doi: 10.1002/adhm.201901215. Epub 2019 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验