Suppr超能文献

使用基于深度学习的图像处理技术在芯片上分析血管生成。

Analyzing angiogenesis on a chip using deep learning-based image processing.

作者信息

Choi Dong-Hee, Liu Hui-Wen, Jung Yong Hun, Ahn Jinchul, Kim Jin-A, Oh Dongwoo, Jeong Yeju, Kim Minseop, Yoon Hongjin, Kang Byengkyu, Hong Eunsol, Song Euijeong, Chung Seok

机构信息

School of Mechanical Engineering, Korea University, Seoul, 02841, Korea.

KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Korea.

出版信息

Lab Chip. 2023 Jan 31;23(3):475-484. doi: 10.1039/d2lc00983h.

Abstract

Angiogenesis, the formation of new blood vessels from existing vessels, has been associated with more than 70 diseases. Although numerous studies have established angiogenesis models, only a few indicators can be used to analyze angiogenic structures. In the present study, we developed an image-processing pipeline based on deep learning to analyze and quantify angiogenesis. We utilized several image-processing algorithms to quantify angiogenesis, including a deep learning-based cell nuclear segmentation algorithm and image skeletonization. This method could quantify and measure changes in blood vessels in response to biochemical gradients using 16 indicators, including length, width, number, and nuclear distribution. Moreover, this procedure is highly efficient for the three-dimensional quantitative analysis of angiogenesis and can be applied to diverse angiogenesis investigations.

摘要

血管生成,即从现有血管形成新血管,与70多种疾病有关。尽管众多研究已建立血管生成模型,但仅有少数指标可用于分析血管生成结构。在本研究中,我们开发了一种基于深度学习的图像处理流程来分析和量化血管生成。我们利用了几种图像处理算法来量化血管生成,包括基于深度学习的细胞核分割算法和图像骨架化。该方法可使用16个指标(包括长度、宽度、数量和细胞核分布)来量化和测量血管对生化梯度的变化。此外,该程序对于血管生成的三维定量分析非常高效,并且可应用于各种血管生成研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验