Suppr超能文献

建立一个含三七总皂苷的中药注射剂不良反应预测系统:基于机器学习的巢式病例对照研究。

Develop an ADR prediction system of Chinese herbal injections containing Panax notoginseng saponin: a nested case-control study using machine learning.

机构信息

Pharmacy, University of Electronic Science and Technology of China Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.

Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China.

出版信息

BMJ Open. 2022 Sep 8;12(9):e061457. doi: 10.1136/bmjopen-2022-061457.

Abstract

OBJECTIVE

This study aimed to develop an adverse drug reactions (ADR) antecedent prediction system using machine learning algorithms to provide the reference for security usage of Chinese herbal injections containing Panax notoginseng saponin in clinical practice.

DESIGN

A nested case-control study.

SETTING

National Center for ADR Monitoring and the Electronic Medical Record (EMR) system.

PARTICIPANTS

All patients were from five medical institutions in Sichuan Province from January 2010 to December 2018.

MAIN OUTCOMES/MEASURES: Data of patients with ADR who used Chinese herbal injections containing Panax notoginseng saponin were collected from the National Center for ADR Monitoring. A nested case-control study was used to randomly match patients without ADR from the EMR system by the ratio of 1:4. Eighteen machine learning algorithms were applied for the development of ADR prediction models. Area under curve (AUC), accuracy, precision, recall rate and F1 value were used to evaluate the predictive performance of the model. An ADR prediction system was established by the best model selected from the 1080 models.

RESULTS

A total of 530 patients from five medical institutions were included, and 1080 ADR prediction models were developed. Among these models, the AUC of the best capable one was 0.9141 and the accuracy was 0.8947. According to the best model, a prediction system, which can provide early identification of patients at risk for the ADR of Panax notoginseng saponin, has been established.

CONCLUSION

The prediction system developed based on the machine learning model in this study had good predictive performance and potential clinical application.

摘要

目的

本研究旨在开发一种基于机器学习算法的药物不良反应(ADR)前驱预测系统,为临床实践中使用含三七总皂苷的中药注射剂的安全性提供参考。

设计

巢式病例对照研究。

设置

国家药品不良反应监测中心和电子病历(EMR)系统。

参与者

所有患者均来自四川省 5 家医疗机构,时间为 2010 年 1 月至 2018 年 12 月。

主要结局/指标:从国家药品不良反应监测中心收集使用含三七总皂苷的中药注射剂发生 ADR 的患者数据。采用巢式病例对照研究,按照 1:4 的比例,从 EMR 系统中随机匹配无 ADR 的患者。应用 18 种机器学习算法开发 ADR 预测模型。采用曲线下面积(AUC)、准确性、精确性、召回率和 F1 值评价模型预测性能。从 1080 个模型中选择最佳模型建立 ADR 预测系统。

结果

共纳入 5 家医疗机构的 530 例患者,建立了 1080 个 ADR 预测模型。在这些模型中,最佳模型的 AUC 为 0.9141,准确性为 0.8947。根据最佳模型,建立了一个预测系统,可以早期识别发生三七总皂苷 ADR 的高风险患者。

结论

本研究基于机器学习模型开发的预测系统具有良好的预测性能和潜在的临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2b0/9462100/fd91a422a0e6/bmjopen-2022-061457f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验