Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
Sci Rep. 2024 Feb 3;14(1):2823. doi: 10.1038/s41598-024-53309-4.
Three-dimensional (3D) geometrical models are potent tools for quantifying complex tissue features and exploring structure-function relationships. However, these models are generally incomplete due to experimental limitations in acquiring multiple (> 4) fluorescent channels in thick tissue sections simultaneously. Indeed, predictive geometrical and functional models of the liver have been restricted to few tissue and cellular components, excluding important cellular populations such as hepatic stellate cells (HSCs) and Kupffer cells (KCs). Here, we combined deep-tissue immunostaining, multiphoton microscopy, deep-learning techniques, and 3D image processing to computationally expand the number of simultaneously reconstructed tissue structures. We then generated a spatial single-cell atlas of hepatic architecture (Hep3D), including all main tissue and cellular components at different stages of post-natal development in mice. We used Hep3D to quantitatively study 1) hepatic morphodynamics from early post-natal development to adulthood, and 2) the effect on the liver's overall structure when changing the hepatic environment after removing KCs. In addition to a complete description of bile canaliculi and sinusoidal network remodeling, our analysis uncovered unexpected spatiotemporal patterns of non-parenchymal cells and hepatocytes differing in size, number of nuclei, and DNA content. Surprisingly, we found that the specific depletion of KCs results in morphological changes in hepatocytes and HSCs. These findings reveal novel characteristics of liver heterogeneity and have important implications for both the structural organization of liver tissue and its function. Our next-gen 3D single-cell atlas is a powerful tool to understand liver tissue architecture, opening up avenues for in-depth investigations into tissue structure across both normal and pathological conditions.
三维(3D)几何模型是量化复杂组织特征和探索结构-功能关系的有力工具。然而,由于在同时获取厚组织切片中的多个(>4)荧光通道方面存在实验限制,这些模型通常是不完整的。事实上,肝脏的预测几何和功能模型仅限于少数组织和细胞成分,排除了重要的细胞群体,如肝星状细胞(HSCs)和库普弗细胞(KCs)。在这里,我们结合了深层组织免疫染色、多光子显微镜、深度学习技术和 3D 图像处理,以计算扩展同时重建的组织结构的数量。然后,我们生成了一个肝脏结构的空间单细胞图谱(Hep3D),包括在小鼠出生后不同发育阶段的所有主要组织和细胞成分。我们使用 Hep3D 来定量研究 1)从出生后早期到成年的肝形态动力学,以及 2)在去除 KCs 后改变肝环境对肝脏整体结构的影响。除了对胆小管和窦状网络重塑的完整描述外,我们的分析还揭示了非实质细胞和肝细胞在大小、核数和 DNA 含量方面存在出乎意料的时空模式。令人惊讶的是,我们发现特定的 KCs 耗竭会导致肝细胞和 HSCs 的形态变化。这些发现揭示了肝脏异质性的新特征,对肝组织的结构组织及其功能都有重要意义。我们的下一代 3D 单细胞图谱是理解肝组织架构的有力工具,为深入研究正常和病理条件下的组织结构开辟了途径。