Pritchard James Conrad, Hawkins Kathleen Mills, Cho Yeo-Myoung, Spahr Stephanie, Struck Scott D, Higgins Christopher P, Luthy Richard G
Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), National Science Foundation Engineering Research Center, Stanford, California 94305, United States.
Department of Civil & Environmental Engineering, Stanford University, Stanford, California 94305, United States.
ACS Environ Au. 2022 Sep 28;3(1):34-46. doi: 10.1021/acsenvironau.2c00037. eCollection 2023 Jan 18.
Urban stormwater runoff is a significant driver of surface water quality impairment. Recently, attention has been drawn to potential beneficial use of urban stormwater runoff, including augmenting drinking water supply in water-stressed areas. However, beneficial use relies on improved treatment of stormwater runoff to remove mobile dissolved metals and trace organic contaminants (TrOCs). This study assesses six engineered media mixtures consisting of sand, zeolite, high-temperature gasification biochar, and regenerated activated carbon (RAC) for removing a suite of co-contaminants comprising five metals, three herbicides, four pesticides, a corrosion inhibitor, six per- and polyfluoroalkyl substances (PFASs), five polychlorinated biphenyls (PCBs), and six polycyclic aromatic hydrocarbons (PAHs). This long-term laboratory-scale column study uses a novel approach to generate reproducible synthetic stormwater that incorporates catch basin material and straw-derived dissolved organic carbon. Higher flow conditions (20 cm hr), larger sized media (0.42-1.68 mm), and downflow configuration with outlet control increase the relevance of this study to better enable implementation in the field. Biochar- and RAC-amended engineered media filters removed nearly all of the TrOCs in the effluent over the course of three months of continuous flow (480 empty bed volumes), while sample ports spaced at 25% and 50% along the column depth provide windows to observe contaminant transport. Biochar provided greater benefit to TrOC removal than RAC on a mass basis. This study used relatively high concentrations of contaminants and low biochar and RAC content to observe contaminant transport. Performance in the field is likely to be significantly better with higher biochar- and RAC-content filters and lower ambient stormwater contaminant concentrations. This study provides proof-of-concept for biochar- and RAC-amended engineered media filters operated at a flow rate of 20 cm hr for removing dissolved TrOCs and metals and offers insights on the performance of biochar and RAC for improved stormwater treatment and field trials.
城市雨水径流是地表水水质恶化的一个重要驱动因素。最近,人们开始关注城市雨水径流的潜在有益用途,包括在水资源紧张地区增加饮用水供应。然而,有益用途依赖于改进雨水径流处理,以去除可移动的溶解金属和痕量有机污染物(TrOCs)。本研究评估了六种由沙子、沸石、高温气化生物炭和再生活性炭(RAC)组成的工程介质混合物,用于去除一组共污染物,包括五种金属、三种除草剂、四种杀虫剂、一种缓蚀剂、六种全氟和多氟烷基物质(PFASs)、五种多氯联苯(PCBs)和六种多环芳烃(PAHs)。这项长期的实验室规模柱试验采用了一种新颖的方法来生成可重复的合成雨水,该方法结合了集水池材料和秸秆衍生的溶解有机碳。更高的流量条件(20厘米/小时)、更大尺寸的介质(0.42 - 1.68毫米)以及带有出口控制的向下流动配置增加了本研究的相关性,以便更好地在实地实施。在连续流动三个月(480个空床体积)的过程中,添加生物炭和RAC的工程介质过滤器几乎去除了流出物中的所有TrOCs,而沿柱深度按25%和50%间隔设置的采样口提供了观察污染物迁移的窗口。按质量计算,生物炭对TrOC去除的益处比RAC更大。本研究使用了相对高浓度的污染物以及低生物炭和RAC含量来观察污染物迁移。在实地,生物炭和RAC含量更高且环境雨水污染物浓度更低的过滤器性能可能会显著更好。本研究为以20厘米/小时的流速运行的添加生物炭和RAC的工程介质过滤器去除溶解的TrOCs和金属提供了概念验证,并提供了关于生物炭和RAC在改善雨水处理和实地试验性能方面的见解。