Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China.
Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China.
Addict Biol. 2023 Feb;28(2):e13267. doi: 10.1111/adb.13267.
Drug abuse is a serious problem worldwide. Owing to intermittent intake of certain substances and the early inconspicuous clinical symptoms, this brings huge challenges for timely diagnosing addiction status and preventing substance use disorders (SUDs). As a non-invasive technique, neuroimaging can capture neurobiological signatures of abnormality in multiple brain regions caused by drug consumption in each clinical stage, like parenchymal morphology alteration as well as aberrant functional activity and connectivity of cerebral areas, making it realizable to diagnosis, prediction and even preemptive therapy of addiction. Machine learning (ML) algorithms primarily used for classification have been extensively applied in analysing medical imaging datasets. Significant neurobiological characteristics employed and revealed by classifiers were used to diagnose addictive states and predict initiation and vulnerability to drug usage, treatment abstinence, relapse and resilience of addicts and the risk of SUD. In this review, we summarize application of ML methods in neuroimaging focusing on addicts' diagnosis of clinical status and risk prediction and elucidate the discriminative neurobiological features from brain electrophysiological, morphological and functional perspectives that contribute most to the classifier, finally highlighting the auxiliary role of ML in addiction treatment.
药物滥用是一个全球性的严重问题。由于某些物质的间歇性摄入和早期不明显的临床症状,这给及时诊断成瘾状态和预防物质使用障碍(SUD)带来了巨大挑战。作为一种非侵入性技术,神经影像学可以捕捉到药物在每个临床阶段引起的多个脑区神经生物学异常的特征,如实质形态改变以及大脑区域异常的功能活动和连通性,从而实现成瘾的诊断、预测甚至预防性治疗。主要用于分类的机器学习(ML)算法已广泛应用于分析医学成像数据集。分类器所采用和揭示的重要神经生物学特征可用于诊断成瘾状态,并预测药物使用的开始和易感性、治疗戒断、复发和成瘾者的恢复力以及 SUD 的风险。在这篇综述中,我们总结了机器学习方法在神经影像学中的应用,重点关注临床状态和风险预测的成瘾者诊断,并从脑电生理、形态和功能角度阐明了对分类器贡献最大的鉴别性神经生物学特征,最后强调了 ML 在成瘾治疗中的辅助作用。