Suppr超能文献

基于卷积神经网络的迁移学习在冰冻切片肿瘤分类中的应用效果。

Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections.

机构信息

Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03080, Korea.

Department of Convergence Medicine, Asan Institute of Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Korea.

出版信息

Sci Rep. 2020 Dec 14;10(1):21899. doi: 10.1038/s41598-020-78129-0.

Abstract

Fast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.

摘要

快速准确地确认术中前哨淋巴结活检冷冻组织切片中的转移是做出关键手术决策的重要工具。然而,病理学家在时间限制内很难做出准确的诊断。由于高质量标签的冷冻数据集数量有限,因此训练稳健且准确的深度学习模型也很困难。为了克服这些问题,我们验证了从 CAMELYON16 进行迁移学习的有效性,以提高基于卷积神经网络 (CNN) 的分类模型在我们来自 Asan 医疗中心 (AMC) 的冷冻数据集(N=297)上的性能。在 297 张全玻片图像 (WSI) 中,有 157 张和 40 张 WSI 用于以 2、4、8、20、40 和 100%的不同数据集比例训练深度学习模型。其余的,即 100 张 WSI,用于验证基于斑块和幻灯片级分类的模型性能。首尔国立大学盆唐医院 (SNUBH) 的另外 228 张 WSI 被用作外部验证。使用三个初始权重,即基于 scratch 的(随机初始化)、基于 ImageNet 的和基于 CAMELYON16 的模型来验证它们在外部验证中的有效性。在 AMC 数据集的斑块级分类结果中,使用小数据集(最多 40%,即 62 张 WSI)训练的基于 CAMELYON16 的模型的曲线下面积(AUC)显著高于基于 scratch 和基于 ImageNet 的模型的 AUC,分别为 0.929 和 0.897,而基于 CAMELYON16 和基于 ImageNet 的模型分别使用 100%的训练数据集训练的 AUC 分别为 0.944 和 0.943。对于外部验证,基于 CAMELYON16 的模型显示出比基于 scratch 和基于 ImageNet 的模型更高的 AUC。在冷冻切片数据集数量有限的情况下,验证了迁移学习增强模型性能的幻灯片可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01b6/7736325/6c7e4a39d805/41598_2020_78129_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验