文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

LSD1 定义了骨骼肌对环境应激的纤维类型选择性反应。

LSD1 defines the fiber type-selective responsiveness to environmental stress in skeletal muscle.

机构信息

Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.

Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.

出版信息

Elife. 2023 Jan 25;12:e84618. doi: 10.7554/eLife.84618.


DOI:10.7554/eLife.84618
PMID:36695573
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9876571/
Abstract

Skeletal muscle exhibits remarkable plasticity in response to environmental cues, with stress-dependent effects on the fast-twitch and slow-twitch fibers. Although stress-induced gene expression underlies environmental adaptation, it is unclear how transcriptional and epigenetic factors regulate fiber type-specific responses in the muscle. Here, we show that flavin-dependent lysine-specific demethylase-1 (LSD1) differentially controls responses to glucocorticoid and exercise in postnatal skeletal muscle. Using skeletal muscle-specific LSD1-knockout mice and in vitro approaches, we found that LSD1 loss exacerbated glucocorticoid-induced atrophy in the fast fiber-dominant muscles, with reduced nuclear retention of Foxk1, an anti-autophagic transcription factor. Furthermore, LSD1 depletion enhanced endurance exercise-induced hypertrophy in the slow fiber-dominant muscles, by induced expression of ERRγ, a transcription factor that promotes oxidative metabolism genes. Thus, LSD1 serves as an 'epigenetic barrier' that optimizes fiber type-specific responses and muscle mass under the stress conditions. Our results uncover that LSD1 modulators provide emerging therapeutic and preventive strategies against stress-induced myopathies such as sarcopenia, cachexia, and disuse atrophy.

摘要

骨骼肌对环境信号表现出显著的可塑性,对快肌纤维和慢肌纤维有应激依赖性影响。尽管应激诱导的基因表达是环境适应的基础,但转录和表观遗传因子如何调节肌肉中纤维类型特异性反应尚不清楚。在这里,我们表明黄素依赖的赖氨酸特异性去甲基酶 1(LSD1)在出生后骨骼肌中对糖皮质激素和运动的反应有差异控制。使用骨骼肌特异性 LSD1 敲除小鼠和体外方法,我们发现 LSD1 缺失加剧了糖皮质激素诱导的快肌纤维占优势的肌肉萎缩,抗自噬转录因子 Foxk1 的核保留减少。此外,LSD1 耗竭通过诱导促进氧化代谢基因表达的转录因子 ERRγ,增强了慢肌纤维占优势的肌肉的耐力运动诱导的肥大。因此,LSD1 作为一种“表观遗传障碍”,在应激条件下优化纤维类型特异性反应和肌肉质量。我们的研究结果表明,LSD1 调节剂为应激诱导的肌病(如肌肉减少症、恶病质和废用性萎缩)提供了新的治疗和预防策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/d18b29ffbd47/elife-84618-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/335bbf6e6cc8/elife-84618-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/f08bb84a2ebe/elife-84618-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/d1ae4e491473/elife-84618-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/9d4c506d32c5/elife-84618-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/a92443b11824/elife-84618-fig1-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/448b3028b0d9/elife-84618-fig1-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/b0a5849000e8/elife-84618-fig1-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/2caa733f7d00/elife-84618-fig1-figsupp7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/26a047cee714/elife-84618-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/1e9c3db78908/elife-84618-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/35e386aa9470/elife-84618-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/e155efb4ab1f/elife-84618-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/bf37fb51542f/elife-84618-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/11cdac84eb48/elife-84618-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/093cc673aa5e/elife-84618-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/a900f3236c2b/elife-84618-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/64dcd87849b0/elife-84618-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/451f68181fc4/elife-84618-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/38d121437333/elife-84618-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/58df00816f26/elife-84618-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/d18b29ffbd47/elife-84618-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/335bbf6e6cc8/elife-84618-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/f08bb84a2ebe/elife-84618-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/d1ae4e491473/elife-84618-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/9d4c506d32c5/elife-84618-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/a92443b11824/elife-84618-fig1-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/448b3028b0d9/elife-84618-fig1-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/b0a5849000e8/elife-84618-fig1-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/2caa733f7d00/elife-84618-fig1-figsupp7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/26a047cee714/elife-84618-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/1e9c3db78908/elife-84618-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/35e386aa9470/elife-84618-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/e155efb4ab1f/elife-84618-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/bf37fb51542f/elife-84618-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/11cdac84eb48/elife-84618-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/093cc673aa5e/elife-84618-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/a900f3236c2b/elife-84618-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/64dcd87849b0/elife-84618-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/451f68181fc4/elife-84618-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/38d121437333/elife-84618-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/58df00816f26/elife-84618-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35ba/9876571/d18b29ffbd47/elife-84618-fig7.jpg

相似文献

[1]
LSD1 defines the fiber type-selective responsiveness to environmental stress in skeletal muscle.

Elife. 2023-1-25

[2]
LSD1 mediates metabolic reprogramming by glucocorticoids during myogenic differentiation.

Nucleic Acids Res. 2018-6-20

[3]
Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells.

Nat Commun. 2018-1-25

[4]
LSD1 inhibition circumvents glucocorticoid-induced muscle wasting of male mice.

Nat Commun. 2024-4-26

[5]
Class I lysine deacetylases promote glucocorticoid-induced transcriptional repression through functional interaction with LSD1.

J Steroid Biochem Mol Biol. 2017-3

[6]
Mechanisms for fiber-type specificity of skeletal muscle atrophy.

Curr Opin Clin Nutr Metab Care. 2013-5

[7]
Muscle mechanics: adaptations with exercise-training.

Exerc Sport Sci Rev. 1996

[8]
Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation.

Genes Dev. 2016-8-15

[9]
LSD1 promotes S-phase entry and tumorigenesis via chromatin co-occupation with E2F1 and selective H3K9 demethylation.

Oncogene. 2017-10-9

[10]
Parallel mechanisms for resting nucleo-cytoplasmic shuttling and activity dependent translocation provide dual control of transcriptional regulators HDAC and NFAT in skeletal muscle fiber type plasticity.

J Muscle Res Cell Motil. 2006

引用本文的文献

[1]
Epigenetic Changes Associated With Obesity-related Metabolic Comorbidities.

J Endocr Soc. 2025-8-4

[2]
RCOR1 promotes myoblast differentiation and muscle regeneration.

Cell Death Discov. 2025-7-1

[3]
LSD1 inhibition by tranylcypromine hydrochloride reduces alkali burn-induced corneal neovascularization and ferroptosis by suppressing HIF-1α pathway.

Front Pharmacol. 2024-7-26

[4]
Forkhead Box Protein K1 Promotes Chronic Kidney Disease by Driving Glycolysis in Tubular Epithelial Cells.

Adv Sci (Weinh). 2024-9

[5]
Epigenetic control of skeletal muscle atrophy.

Cell Mol Biol Lett. 2024-7-8

[6]
LSD1 inhibition circumvents glucocorticoid-induced muscle wasting of male mice.

Nat Commun. 2024-4-26

[7]
Subchronic Arsenite Exposure Induced Atrophy and Erythropoietin Sensitivity Reduction in Skeletal Muscle Were Relevant to Declined Serum Melatonin Levels in Middle-Aged Rats.

Toxics. 2023-8-10

本文引用的文献

[1]
The nuclear receptor ERR cooperates with the cardiogenic factor GATA4 to orchestrate cardiomyocyte maturation.

Nat Commun. 2022-4-13

[2]
LSD1 downregulates p21 expression in vascular smooth muscle cells and promotes neointima formation.

Biochem Pharmacol. 2022-4

[3]
Epigenetic memory in reprogramming.

Curr Opin Genet Dev. 2021-10

[4]
LSD1 defines erythroleukemia metabolism by controlling the lineage-specific transcription factors GATA1 and C/EBPα.

Blood Adv. 2021-5-11

[5]
A necessary role of DNMT3A in endurance exercise by suppressing ALDH1L1-mediated oxidative stress.

EMBO J. 2021-5-3

[6]
Skeletal muscle transcriptome in healthy aging.

Nat Commun. 2021-4-1

[7]
Hallmarks of environmental insults.

Cell. 2021-3-18

[8]
Mechanisms of muscle atrophy and hypertrophy: implications in health and disease.

Nat Commun. 2021-1-12

[9]
Skeletal muscle effects of two different 10-week exercise regimens, voluntary wheel running, and forced treadmill running, in mice: A pilot study.

Physiol Rep. 2020-10

[10]
A single-cell transcriptomic atlas characterizes ageing tissues in the mouse.

Nature. 2020-7-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索