Azilinon Mikhael, Wang Huifang E, Makhalova Julia, Zaaraoui Wafaa, Ranjeva Jean-Philippe, Bartolomei Fabrice, Guye Maxime, Jirsa Viktor
Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France.
Aix Marseille University, CNRS, CRMBM, Marseille, France.
Netw Neurosci. 2024 Oct 1;8(3):673-696. doi: 10.1162/netn_a_00371. eCollection 2024.
Patients presenting with drug-resistant epilepsy are eligible for surgery aiming to remove the regions involved in the production of seizure activities, the so-called epileptogenic zone network (EZN). Thus the accurate estimation of the EZN is crucial. Data-driven, personalized virtual brain models derived from patient-specific anatomical and functional data are used in Virtual Epileptic Patient (VEP) to estimate the EZN via optimization methods from Bayesian inference. The Bayesian inference approach used in previous VEP integrates priors, based on the features of stereotactic-electroencephalography (SEEG) seizures' recordings. Here, we propose new priors, based on quantitative Na-MRI. The Na-MRI data were acquired at 7T and provided several features characterizing the sodium signal decay. The hypothesis is that the sodium features are biomarkers of neuronal excitability related to the EZN and will add additional information to VEP estimation. In this paper, we first proposed the mapping from Na-MRI features to predict the EZN via a machine learning approach. Then, we exploited these predictions as priors in the VEP pipeline. The statistical results demonstrated that compared with the results from current VEP, the result from VEP based on Na-MRI prior has better balanced accuracy, and the similar weighted harmonic mean of the precision and recall.
患有耐药性癫痫的患者有资格接受手术,旨在切除参与癫痫发作活动产生的区域,即所谓的致痫区网络(EZN)。因此,准确估计EZN至关重要。在虚拟癫痫患者(VEP)中,使用从患者特定的解剖学和功能数据派生的数据驱动的个性化虚拟脑模型,通过贝叶斯推理的优化方法来估计EZN。先前VEP中使用的贝叶斯推理方法基于立体定向脑电图(SEEG)癫痫发作记录的特征整合先验信息。在此,我们基于定量钠磁共振成像(Na-MRI)提出新的先验信息。Na-MRI数据在7T下采集,并提供了表征钠信号衰减的几个特征。假设是钠特征是与EZN相关的神经元兴奋性的生物标志物,并将为VEP估计添加额外信息。在本文中,我们首先提出通过机器学习方法从Na-MRI特征进行映射以预测EZN。然后,我们在VEP流程中将这些预测用作先验信息。统计结果表明,与当前VEP的结果相比,基于Na-MRI先验信息的VEP结果具有更好的平衡准确性,以及精度和召回率的相似加权调和均值。