Yang Chunfan, Zhou Qian, Jiao Zeqing, Zhao Hongmei, Huang Chun-Hua, Zhu Ben-Zhan, Su Hongmei
College of Chemistry, Beijing Normal University Institution No.19, Haidian District, Beijing, China.
Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
Commun Chem. 2021 May 14;4(1):68. doi: 10.1038/s42004-021-00507-0.
The triplet metal to ligand charge transfer (MLCT) luminescence of ruthenium (II) polypyridyl complexes offers attractive imaging properties, specifically towards the development of sensitive and structure-specific DNA probes. However, rapidly-deactivating dark state formation may compete with MLCT luminescence depending on different DNA structures. In this work, by combining femtosecond and nanosecond pump-probe spectroscopy, the MLCT relaxation dynamics of [Ru(phen)(dppz)] (phen = 1,10-phenanthroline, dppz = dipyridophenazine) in two iconic G-quadruplexes has been scrutinized. The binding modes of stacking of dppz ligand on the terminal G-quartet fully and partially are clearly identified based on the biexponential decay dynamics of the MLCT luminescence at 620 nm. Interestingly, the inhibited dark state channel in ds-DNA is open in G-quadruplex, featuring an ultrafast picosecond depopulation process from MLCT to a dark state. The dark state formation rates are found to be sensitive to the content of water molecules in local G-quadruplex structures, indicating different patterns of bound water. The unique excited state dynamics of [Ru(phen)(dppz)] in G-quadruplex is deciphered, providing mechanistic basis for the rational design of photoactive ruthenium metal complexes in biological applications.
钌(II)多吡啶配合物的三重态金属到配体电荷转移(MLCT)发光具有吸引人的成像特性,特别是对于开发灵敏且具有结构特异性的DNA探针而言。然而,取决于不同的DNA结构,快速失活的暗态形成可能会与MLCT发光相互竞争。在这项工作中,通过结合飞秒和纳秒泵浦-探测光谱,研究了[Ru(phen)(dppz)](phen = 1,10-菲咯啉,dppz = 二吡啶并菲嗪)在两种标志性G-四链体中的MLCT弛豫动力学。基于620 nm处MLCT发光的双指数衰减动力学,明确识别了dppz配体在末端G-四重体上完全和部分堆积的结合模式。有趣的是,ds-DNA中受抑制的暗态通道在G-四链体中是开放的,其特征是从MLCT到暗态的超快皮秒去布居过程。发现暗态形成速率对局部G-四链体结构中的水分子含量敏感,表明结合水的模式不同。阐明了[Ru(phen)(dppz)]在G-四链体中独特的激发态动力学,为生物应用中光活性钌金属配合物的合理设计提供了机理基础。