文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过一种通用的涂层方法将抗体组装到纳米颗粒上,实现针对特定部位的抗体组装,从而提高细胞靶向性。

Site-Specific Antibody Assembly on Nanoparticles via a Versatile Coating Method for Improved Cell Targeting.

机构信息

School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.

Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW, 2052, Australia.

出版信息

Adv Sci (Weinh). 2023 Mar;10(9):e2206546. doi: 10.1002/advs.202206546. Epub 2023 Jan 25.


DOI:10.1002/advs.202206546
PMID:36698301
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10037962/
Abstract

Antibody-nanoparticle conjugates are promising candidates for precision medicine. However, developing a controllable method for conjugating antibodies to nanoparticles without compromising the antibody activity represents a critical challenge. Here, a facile and generalizable film-coating method is presented using zeolitic imidazole framework-8 (ZIF-8) to immobilize antibodies on various nanoparticles in a favorable orientation for enhanced cell targeting. Different model and therapeutic antibodies (e.g., Herceptin) are assembled on nanoparticles via a biomineralized film-coating method and exhibited high antibody loading and targeting efficiencies. Importantly, the antibodies selectively bind to ZIF-8 via their Fc regions, which favorably exposes the functional Fab regions to the biological target, thus improving the cell targeting ability of antibody-coated nanoparticles. In combination, molecular dynamics simulations and experimental studies on antibody immobilization, orientation efficiency, and biofunctionality collectively demonstrate that this versatile site-specific antibody conjugation method provides effective control over antibody orientation and leads to improved cell targeting for a variety of nanoparticles.

摘要

抗体-纳米粒子缀合物是精准医学的有前途的候选物。然而,开发一种可控的方法将抗体缀合到纳米粒子上而不损害抗体活性是一个关键的挑战。在这里,提出了一种使用沸石咪唑骨架-8(ZIF-8)的简便且可推广的薄膜涂层方法,以将抗体固定在各种纳米粒子上,以实现增强的细胞靶向的有利取向。通过生物矿化薄膜涂层方法将不同的模型和治疗性抗体(例如赫赛汀)组装到纳米粒子上,并表现出高的抗体负载和靶向效率。重要的是,抗体通过其 Fc 区域选择性地与 ZIF-8 结合,这有利于将功能 Fab 区域暴露于生物靶标,从而提高抗体包被纳米粒子的细胞靶向能力。总之,抗体固定、取向效率和生物功能的分子动力学模拟和实验研究共同表明,这种多功能的特异性抗体缀合方法可有效地控制抗体的取向,并提高各种纳米粒子的细胞靶向性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46d/10037962/74f672c5cbe4/ADVS-10-2206546-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46d/10037962/29a9786fa314/ADVS-10-2206546-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46d/10037962/43612eb01aee/ADVS-10-2206546-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46d/10037962/be693a968954/ADVS-10-2206546-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46d/10037962/7499cfcf68a6/ADVS-10-2206546-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46d/10037962/74f672c5cbe4/ADVS-10-2206546-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46d/10037962/29a9786fa314/ADVS-10-2206546-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46d/10037962/43612eb01aee/ADVS-10-2206546-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46d/10037962/be693a968954/ADVS-10-2206546-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46d/10037962/7499cfcf68a6/ADVS-10-2206546-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d46d/10037962/74f672c5cbe4/ADVS-10-2206546-g001.jpg

相似文献

[1]
Site-Specific Antibody Assembly on Nanoparticles via a Versatile Coating Method for Improved Cell Targeting.

Adv Sci (Weinh). 2023-3

[2]
Competitive coordination assembly of light-degradable gold nanocluster-intercalated metal organic frameworks for photoresponsive drug release.

J Mater Chem B. 2024-4-24

[3]
ZIF-8 with encapsulated dihydroartemisinin in a drug delivery system for protection against ANKA-induced experimental cerebral malaria in C57BL/6N mice.

Microbiol Spectr. 2025-7

[4]
Construction of Z-Scheme MOF-on-MOF heterostructures for mitochondria-targeted sonodynamic therapy.

Acta Biomater. 2025-5-1

[5]
Structural modification strategies for ferritin nanoparticles and their applications in biomedicine: a narrative review.

Nanoscale. 2025-7-31

[6]
Production of site-specific antibody conjugates using metabolic glycoengineering and novel Fc glycovariants.

J Biol Chem. 2024-12

[7]
Study on the Application of Zeolitic Imidazolate Framework-8 Loaded With Artemisia Argyi Essential Oil in the Treatment of Bacterial Infected Wounds.

J Biomed Mater Res A. 2025-6

[8]
DS-Modified Paeoniflorin pH-Responsive Lipid-Polymer Hybrid Nanoparticles for Targeted Macrophage Polarization in a Rat Model of Rheumatoid Arthritis.

Int J Nanomedicine. 2025-7-12

[9]
Recent progress in ZIF-polymer composites for advanced drug delivery applications.

J Mater Chem B. 2025-6-18

[10]
Effective in vivo delivery of diphtheria toxin using protein cage nanoparticles for targeted cancer therapy.

Acta Biomater. 2025-8

引用本文的文献

[1]
Stomata-targeted nanocarriers enhance plant defense against pathogen colonization.

Nat Commun. 2025-5-23

[2]
Layered double hydroxides for regenerative nanomedicine and tissue engineering: recent advances and future perspectives.

J Nanobiotechnology. 2025-5-22

[3]
Enzyme-loaded Fe-doped ZIF-90 particles as catalytic bioreactor hybrids for operating catalytic cascades.

Chem Sci. 2025-5-1

[4]
Nanobodies targeting the tumor microenvironment and their formulation as nanomedicines.

Mol Cancer. 2025-3-4

[5]
Magnetic-Plasmonic Core-Shell Nanoparticles: Properties, Synthesis and Applications for Cancer Detection and Treatment.

Nanomaterials (Basel). 2025-2-10

[6]
The micro(nano)plastics perspective: exploring cancer development and therapy.

Mol Cancer. 2025-1-24

[7]
Enzyme-encapsulated metal-organic framework ZIF-8-mediated biosensor for ultrasensitive detection of urinary prostatic exosomal protein using a glucose meter.

RSC Adv. 2024-11-1

[8]
Photothermal therapy co-localized with CD137 agonism improves survival in an SM1 melanoma model without hepatotoxicity.

Nanomedicine (Lond). 2024

[9]
Biomimetic ZIF-8 Nanoparticles: A Novel Approach for Biomimetic Drug Delivery Systems.

Int J Nanomedicine. 2024

[10]
Analytical Techniques for Characterizing Tumor-Targeted Antibody-Functionalized Nanoparticles.

Life (Basel). 2024-4-10

本文引用的文献

[1]
Two-Dimensional Ultra-Thin Nanosheets with Extraordinarily High Drug Loading and Long Blood Circulation for Cancer Therapy.

Small. 2022-6

[2]
Optimal Physicochemical Properties of Antibody-Nanoparticle Conjugates for Improved Tumor Targeting.

Adv Mater. 2022-6

[3]
Self-Assembly of Oriented Antibody-Decorated Metal-Organic Framework Nanocrystals for Active-Targeting Applications.

Adv Mater. 2022-5

[4]
Conjugation of antibody with temperature-responsive polymer click reaction to enable biomarker enrichment for increased diagnostic sensitivity.

Biomater Sci. 2021-7-13

[5]
Conjugation of Native-Like HIV-1 Envelope Trimers onto Liposomes Using EDC/Sulfo-NHS Chemistry: Requirements and Limitations.

Pharmaceutics. 2020-10-16

[6]
Recent advances in improving tumor-targeted delivery of imaging nanoprobes.

Biomater Sci. 2020-8-7

[7]
Dependence of nanoparticle-cell recognition efficiency on the surface orientation of scFv targeting ligands.

Biomater Sci. 2013-7-4

[8]
Cobalt-Directed Assembly of Antibodies onto Metal-Phenolic Networks for Enhanced Particle Targeting.

Nano Lett. 2020-4-8

[9]
Peptide-induced super-assembly of biocatalytic metal-organic frameworks for programmed enzyme cascades.

Chem Sci. 2019-7-22

[10]
Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy.

Biomaterials. 2018-5-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索