Suppr超能文献

用于从超声心动图检测局部室壁运动异常的自动诊断工具

Automatic Diagnostic Tool for Detection of Regional Wall Motion Abnormality from Echocardiogram.

作者信息

Sanjeevi G, Gopalakrishnan Uma, Pathinarupothi Rahul Krishnan, Madathil Thushara

机构信息

Center for Wireless Networks & Applications (WNA), Amrita Vishwa Vidyapeetham, Amritapuri, India.

Department of Cardiac Anesthesiology, Amrita Institute of Medical Sciences and Research Center, Kochi, India.

出版信息

J Med Syst. 2023 Jan 26;47(1):13. doi: 10.1007/s10916-023-01911-w.

Abstract

The echocardiogram is an ultrasound imaging modality, employed to assess cardiac abnormalities. The Regional Wall Motion Abnormality (RWMA) is the occurrence of abnormal or absent contractility of a region of the heart muscle. Conventional assessment of RWMA is based on visual interpretation of endocardial excursion and myocardial thickening from the echocardiogram videos. Wall motion assessment accuracy depends on the experience of the sonographer. Current automated methods highly depend on the preprocessing steps such as segmentation of ventricle part or manually finding systole and diastole frames from an echocardiogram. Additionally, state-of-the-art methods majorly make use of images rather than videos, which specifically lack the usage of temporal information associated with an echocardiogram. The deep learning models used, employ highly complex networks with billions of trainable parameters. Further, the existing models used on video data add to the computational intensity because of the high frame rates of echocardiogram videos. We developed a novel deep learning architecture EC3D-Net (Echo-Cardio 3D Net), which captures the temporal information for identifying regional wall motion abnormality from echocardiogram. We demonstrate that EC3D-Net can extract temporal information from even raw echocardiogram videos, at low frame rates, employing minimal training parameter-based deep architecture. EC3D-Net achieves both an overall F1-Score and an Area Under Curve (AUC) score of 0.82. Further, we were able to reduce time for training and trainable parameters by 50% through minimizing frames per second. We also show the EC3D-Net is an interpretable model, thereby helping physicians understand our model prediction. RWMA detection from echocardiogram videos is a challenging process and our results demonstrate that we could achieve the state-of-the-art results even while using minimal parameters and time by our EC3D-Net. The proposed network outperforms both complex deep networks as well as fusion methods generally used in video classification.

摘要

超声心动图是一种超声成像方式,用于评估心脏异常。局部室壁运动异常(RWMA)是指心肌某一区域出现异常或无收缩性。传统的RWMA评估基于对超声心动图视频中的心内膜偏移和心肌增厚进行视觉解读。室壁运动评估的准确性取决于超声检查人员的经验。当前的自动化方法高度依赖于预处理步骤,如心室部分的分割或从超声心动图中手动查找收缩期和舒张期帧。此外,最先进的方法主要使用图像而非视频,尤其缺乏对与超声心动图相关的时间信息的利用。所使用的深度学习模型采用具有数十亿个可训练参数的高度复杂网络。此外,由于超声心动图视频的帧率很高,用于视频数据的现有模型增加了计算强度。我们开发了一种新颖的深度学习架构EC3D-Net(超声心动图三维网络),它从超声心动图中捕捉时间信息以识别局部室壁运动异常。我们证明,EC3D-Net即使在低帧率下也能从原始超声心动图视频中提取时间信息,采用基于最小训练参数的深度架构。EC3D-Net的总体F1分数和曲线下面积(AUC)分数均达到0.82。此外,通过最小化每秒帧数,我们能够将训练时间和可训练参数减少50%。我们还表明EC3D-Net是一个可解释的模型,从而帮助医生理解我们的模型预测。从超声心动图视频中检测RWMA是一个具有挑战性的过程,我们的结果表明,即使使用最少的参数和时间,我们的EC3D-Net也能取得最先进的结果。所提出的网络优于复杂的深度网络以及视频分类中通常使用的融合方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验