Suppr超能文献

迈向癌症后疼痛的精准疼痛医学:癌症疼痛表型分析网络使用神经可塑性疼痛标准进行疼痛表型分析的多学科国际指南。

Towards precision pain medicine for pain after cancer: the Cancer Pain Phenotyping Network multidisciplinary international guidelines for pain phenotyping using nociplastic pain criteria.

作者信息

Nijs Jo, Lahousse Astrid, Fernández-de-Las-Peñas César, Madeleine Pascal, Fontaine Christel, Nishigami Tomohiko, Desmedt Christine, Vanhoeij Marian, Mostaqim Kenza, Cuesta-Vargas Antonio I, Kapreli Eleni, Bilika Paraskevi, Polli Andrea, Leysen Laurence, Elma Ömer, Roose Eva, Rheel Emma, Yılmaz Sevilay Tümkaya, De Baets Liesbet, Huysmans Eva, Turk Ali, Saraçoğlu İsmail

机构信息

Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium; Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium; Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.

Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium; Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium; Research Foundation - Flanders (FWO), Brussels, Belgium; Rehabilitation Research (RERE) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy (KIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium.

出版信息

Br J Anaesth. 2023 May;130(5):611-621. doi: 10.1016/j.bja.2022.12.013. Epub 2023 Jan 24.

Abstract

Pain after cancer remains underestimated and undertreated. Precision medicine is a recent concept that refers to the ability to classify patients into subgroups that differ in their susceptibility to, biology, or prognosis of a particular disease, or in their response to a specific treatment, and thus to tailor treatment to the individual patient characteristics. Applying this to pain after cancer, the ability to classify post-cancer pain into the three major pain phenotypes (i.e. nociceptive, neuropathic, and nociplastic pain) and tailor pain treatment accordingly, is an emerging issue. This is especially relevant because available evidence suggests that nociplastic pain is present in an important subgroup of those patients experiencing post-cancer pain. The 2021 International Association for the Study of Pain (IASP) clinical criteria and grading system for nociplastic pain account for the need to identify and correctly classify patients according to the pain phenotype early in their treatment. These criteria are an important step towards precision pain medicine with great potential for the field of clinical oncology. Within this framework, the Cancer Pain Phenotyping (CANPPHE) Network, an international and interdisciplinary group of oncology clinicians and researchers from seven countries, applied the 2021 IASP clinical criteria for nociplastic pain to the growing population of those experiencing post-cancer pain. A manual is provided to allow clinicians to differentiate between predominant nociceptive, neuropathic, or nociplastic pain after cancer. A seven-step diagnostic approach is presented and illustrated using cases to enhance understanding and encourage effective implementation of this approach in clinical practice.

摘要

癌症后的疼痛仍然被低估且治疗不足。精准医学是一个近期的概念,指的是将患者分类为在对特定疾病的易感性、生物学特征或预后,或对特定治疗的反应方面存在差异的亚组的能力,从而根据个体患者的特征定制治疗方案。将其应用于癌症后的疼痛,将癌症后疼痛分类为三种主要疼痛表型(即伤害感受性疼痛、神经性疼痛和神经可塑性疼痛)并相应地定制疼痛治疗方案,是一个新出现的问题。这一点尤为重要,因为现有证据表明,神经可塑性疼痛在经历癌症后疼痛的患者的一个重要亚组中存在。2021年国际疼痛研究协会(IASP)关于神经可塑性疼痛的临床标准和分级系统考虑到了在治疗早期根据疼痛表型识别并正确分类患者的必要性。这些标准是迈向精准疼痛医学的重要一步,对临床肿瘤学领域具有巨大潜力。在此框架内,癌症疼痛表型分析(CANPPHE)网络,一个由来自七个国家的肿瘤临床医生和研究人员组成的国际跨学科小组,将2021年IASP关于神经可塑性疼痛的临床标准应用于越来越多经历癌症后疼痛的人群。提供了一本手册,以使临床医生能够区分癌症后主要的伤害感受性疼痛、神经性疼痛或神经可塑性疼痛。本文介绍了一种七步诊断方法,并通过病例进行说明,以增强理解并鼓励在临床实践中有效实施该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验