Suppr超能文献

工程化 ATP 合酶转子环对烟草叶绿体光合作用的影响。

Impact of engineering the ATP synthase rotor ring on photosynthesis in tobacco chloroplasts.

机构信息

Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.

Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK.

出版信息

Plant Physiol. 2023 May 31;192(2):1221-1233. doi: 10.1093/plphys/kiad043.

Abstract

The chloroplast ATP synthase produces the ATP needed for photosynthesis and plant growth. The trans-membrane flow of protons through the ATP synthase rotates an oligomeric assembly of c subunits, the c-ring. The ion-to-ATP ratio in rotary F1F0-ATP synthases is defined by the number of c-subunits in the rotor c-ring. Engineering the c-ring stoichiometry is, therefore, a possible route to manipulate ATP synthesis by the ATP synthase and hence photosynthetic efficiency in plants. Here, we describe the construction of a tobacco (Nicotiana tabacum) chloroplast atpH (chloroplastic ATP synthase subunit c gene) mutant in which the c-ring stoichiometry was increased from 14 to 15 c-subunits. Although the abundance of the ATP synthase was decreased to 25% of wild-type (WT) levels, the mutant lines grew as well as WT plants and photosynthetic electron transport remained unaffected. To synthesize the necessary ATP for growth, we found that the contribution of the membrane potential to the proton motive force was enhanced to ensure a higher proton flux via the c15-ring without unwanted low pH-induced feedback inhibition of electron transport. Our work opens avenues to manipulate plant ion-to-ATP ratios with potentially beneficial consequences for photosynthesis.

摘要

叶绿体 ATP 合酶产生光合作用和植物生长所需的 ATP。质子通过 ATP 合酶的跨膜流动使 c 亚基的寡聚组装体(c 环)旋转。旋转 F1F0-ATP 合酶中的离子与 ATP 的比值由转子 c 环中的 c 亚基数量定义。因此,工程化 c 环计量比是操纵 ATP 合酶中 ATP 合成的一种可能途径,从而提高植物的光合作用效率。在这里,我们描述了构建一个烟草(Nicotiana tabacum)叶绿体 atpH(叶绿体 ATP 合酶亚基 c 基因)突变体,其中 c 环计量比从 14 增加到 15 个 c 亚基。尽管 ATP 合酶的丰度降低到野生型(WT)水平的 25%,但突变体系的生长与 WT 植物一样,光合作用电子传递不受影响。为了合成生长所需的 ATP,我们发现,为了确保通过 c15 环更高的质子通量而不产生不需要的低 pH 诱导的电子传递反馈抑制,膜电位对质子动力势的贡献得到了增强。我们的工作为操纵植物离子与 ATP 的比值开辟了途径,这可能对光合作用有有益的影响。

相似文献

1
Impact of engineering the ATP synthase rotor ring on photosynthesis in tobacco chloroplasts.
Plant Physiol. 2023 May 31;192(2):1221-1233. doi: 10.1093/plphys/kiad043.
2
6
PAB is an assembly chaperone that functions downstream of chaperonin 60 in the assembly of chloroplast ATP synthase coupling factor 1.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4152-7. doi: 10.1073/pnas.1413392111. Epub 2015 Mar 16.
8
Structure, mechanism, and regulation of the chloroplast ATP synthase.
Science. 2018 May 11;360(6389). doi: 10.1126/science.aat4318.
9
Structure and Mechanisms of F-Type ATP Synthases.
Annu Rev Biochem. 2019 Jun 20;88:515-549. doi: 10.1146/annurev-biochem-013118-110903. Epub 2019 Mar 22.
10
Chloroplast ATP synthase: From structure to engineering.
Plant Cell. 2024 Oct 3;36(10):3974-3996. doi: 10.1093/plcell/koae081.

引用本文的文献

1
Comparative chloroplast genome analyses of DC. species: new insights into genome evolution and phylogenomic implications.
Front Plant Sci. 2025 Aug 28;16:1645582. doi: 10.3389/fpls.2025.1645582. eCollection 2025.
2
Sequencing of historical plastid genomes reveal exceptional genetic diversity in early domesticated rye plants.
iScience. 2025 Jun 6;28(7):112716. doi: 10.1016/j.isci.2025.112716. eCollection 2025 Jul 18.
3
ATP synthesis of Enterococcus hirae V-ATPase driven by sodium motive force.
J Biol Chem. 2025 Apr;301(4):108422. doi: 10.1016/j.jbc.2025.108422. Epub 2025 Mar 19.
5
Transcriptome and anatomical analysis of in response to different grazing intensities in desert steppe.
Front Plant Sci. 2024 Jun 10;15:1414093. doi: 10.3389/fpls.2024.1414093. eCollection 2024.
6
Comparative chloroplast genomes of species: genome evolution and phylogenomic implications.
Front Plant Sci. 2024 Apr 30;15:1349358. doi: 10.3389/fpls.2024.1349358. eCollection 2024.
7
Editorial: Functions, working mechanisms, and regulation of rotary ATPases and Ductin proteins.
Front Mol Biosci. 2024 Mar 28;11:1399421. doi: 10.3389/fmolb.2024.1399421. eCollection 2024.
8
Chloroplast ATP synthase: From structure to engineering.
Plant Cell. 2024 Oct 3;36(10):3974-3996. doi: 10.1093/plcell/koae081.
9
Assessing the Impacts of Cu and Mo Engineered Nanomaterials on Crop Plant Growth Using a Targeted Proteomics Approach.
ACS Agric Sci Technol. 2023 Dec 22;4(1):103-117. doi: 10.1021/acsagscitech.3c00431. eCollection 2024 Jan 15.
10
EngineeRING the gear of ATP synthase: a way to address complexity and flexibility of photosynthesis.
Plant Physiol. 2023 May 31;192(2):691-693. doi: 10.1093/plphys/kiad148.

本文引用的文献

2
Proton motive force in plant photosynthesis dominated by ΔpH in both low and high light.
Plant Physiol. 2021 Sep 4;187(1):263-275. doi: 10.1093/plphys/kiab270.
3
Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection.
Nat Plants. 2021 Jul;7(7):979-988. doi: 10.1038/s41477-021-00947-5. Epub 2021 Jun 17.
4
Rotor subunits adaptations in ATP synthases from photosynthetic organisms.
Biochem Soc Trans. 2021 Apr 30;49(2):541-550. doi: 10.1042/BST20190936.
5
Cytochrome bf - Orchestrator of photosynthetic electron transfer.
Biochim Biophys Acta Bioenerg. 2021 May 1;1862(5):148380. doi: 10.1016/j.bbabio.2021.148380. Epub 2021 Jan 16.
6
The Mechanism of Non-Photochemical Quenching in Plants: Localization and Driving Forces.
Plant Cell Physiol. 2021 Oct 29;62(7):1063-1072. doi: 10.1093/pcp/pcaa155.
9
Optimization of ATP Synthase c-Rings for Oxygenic Photosynthesis.
Front Plant Sci. 2020 Jan 30;10:1778. doi: 10.3389/fpls.2019.01778. eCollection 2019.
10
H Transport by K EXCHANGE ANTIPORTER3 Promotes Photosynthesis and Growth in Chloroplast ATP Synthase Mutants.
Plant Physiol. 2020 Apr;182(4):2126-2142. doi: 10.1104/pp.19.01561. Epub 2020 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验