Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
J Exp Bot. 2022 Nov 2;73(19):6891-6901. doi: 10.1093/jxb/erac320.
ATP, produced by the light reactions of photosynthesis, acts as the universal cellular energy cofactor fuelling all life processes. Chloroplast ATP synthase produces ATP using the proton motive force created by solar energy-driven thylakoid electron transport reactions. Here we investigate how increasing abundance of ATP synthase affects leaf photosynthesis and growth of rice, Oryza sativa variety Kitaake. We show that overexpression of AtpD, the nuclear-encoded subunit of the chloroplast ATP synthase, stimulates both abundance of the complex, confirmed by immunodetection of thylakoid complexes separated by Blue Native-PAGE, and ATP synthase activity, detected as higher proton conductivity of the thylakoid membrane. Plants with increased AtpD content had higher CO2 assimilation rates when a stepwise increase in CO2 partial pressure was imposed on leaves at high irradiance. Fitting of the CO2 response curves of assimilation revealed that plants overexpressing AtpD had a higher electron transport rate (J) at high CO2, despite having wild-type-like abundance of the cytochrome b6f complex. A higher maximum carboxylation rate (Vcmax) and lower cyclic electron flow detected in transgenic plants both pointed to an increased ATP production compared with wild-type plants. Our results present evidence that the activity of ATP synthase modulates the rate of electron transport at high CO2 and high irradiance.
ATP 由光合作用的光反应产生,作为通用的细胞能量辅因子,为所有生命过程提供能量。叶绿体 ATP 合酶利用太阳能驱动的类囊体电子传递反应产生的质子动力势来产生 ATP。在这里,我们研究了 ATP 合酶丰度的增加如何影响水稻(Oryza sativa 品种 Kitaake)的叶片光合作用和生长。我们表明,叶绿体 ATP 合酶的核编码亚基 AtpD 的过表达既刺激了该复合物的丰度,这通过 Blue Native-PAGE 分离的类囊体复合物的免疫检测得到证实,又刺激了 ATP 合酶活性,表现为类囊体膜的质子电导率更高。当在高光强下逐步增加 CO2 分压时,具有增加的 AtpD 含量的植物具有更高的 CO2 同化速率。同化的 CO2 响应曲线的拟合表明,尽管细胞色素 b6f 复合物的丰度与野生型相似,但过表达 AtpD 的植物在高 CO2 下具有更高的电子传递速率(J)。在转基因植物中检测到更高的最大羧化速率(Vcmax)和更低的循环电子流都表明与野生型植物相比,ATP 的产生增加。我们的结果提供了证据表明,ATP 合酶的活性调节了高 CO2 和高光强下的电子传递速率。