Shrivastava Rahul, Singhal Manmohan, Gupta Mansi, Joshi Ashish
School of Pharmaceutical and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, India.
Foundation of Healthcare Technologies Society, New Delhi, India.
JMIR Res Protoc. 2023 Jan 27;12:e35452. doi: 10.2196/35452.
Pregnant women are considered a "high-risk" group with limited access to health facilities in urban slums in India. Barriers to using health services appropriately may lead to maternal and child mortality, morbidity, low birth weight, and children with stunted growth. With the increase in the use of artificial intelligence (AI) and machine learning in the health sector, we plan to develop a predictive model that can enable substantial uptake of maternal health services and improvements in adverse pregnancy health care outcomes from early diagnostics to treatment in urban slum settings.
The objective of our study is to develop and evaluate the AI-guided citizen-centric platform that will support the uptake of maternal health services among pregnant women seeking antenatal care living in urban slum settings.
We will conduct a cross-sectional study using a mixed methods approach to enroll 225 pregnant women aged 18-44 years, living in the urban slums of Delhi for more than 6 months, seeking antenatal care, and who have smartphones. Quantitative and qualitative data will be collected using an Open Data Kit Android-based tool. Variables gathered will include sociodemographics, clinical history, pregnancy history, dietary history, COVID-19 history, health care facility data, socioeconomic status, and pregnancy outcomes. All data gathered will be aggregated into a common database. We will use AI to predict the early at-risk pregnancy outcomes (in terms of the type of delivery method, term, and related complications) depending on the needs of the beneficiaries translating into effective service-delivery improvements in enhancing the use of maternal health services among pregnant women seeking antenatal care. The proposed research will help policy makers to prioritize resource planning, resource allocation, and the development of programs and policies to enhance maternal health outcomes. The academic research study has received ethical approval from the University Research Ethics Committee of Dehradun Institute of Technology (DIT) University, Dehradun, India.
The study was approved by the University Research Ethics Committee of DIT University, Dehradun, on July 4, 2021. Enrollment of the eligible participants will begin by April 2022 followed by the development of the predictive model by October 2022 till January 2023. The proposed AI-guided citizen-centric tool will be designed, developed, implemented, and evaluated using principles of human-centered design that will help to predict early at-risk pregnancy outcomes.
The proposed internet-enabled AI-guided prediction model will help identify the potential risk associated with pregnancies and enhance the uptake of maternal health services among those seeking antenatal care for safer deliveries. We will explore the scalability of the proposed platform up to different geographic locations for adoption for similar and other health conditions.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/35452.
在印度城市贫民窟,孕妇被视为“高危”群体,她们获得医疗设施的机会有限。不能恰当地利用医疗服务可能导致母婴死亡、发病、低出生体重以及儿童发育迟缓。随着人工智能(AI)和机器学习在医疗领域的应用增加,我们计划开发一种预测模型,该模型能够促使城市贫民窟环境中大量采用孕产妇保健服务,并改善从早期诊断到治疗的不良妊娠保健结局。
我们研究的目的是开发并评估以公民为中心的人工智能引导平台,该平台将支持居住在城市贫民窟且寻求产前护理的孕妇采用孕产妇保健服务。
我们将采用混合方法进行横断面研究,招募225名年龄在18 - 44岁之间、居住在德里城市贫民窟超过6个月、寻求产前护理且拥有智能手机的孕妇。将使用基于安卓系统的开放数据工具收集定量和定性数据。收集的变量将包括社会人口统计学、临床病史、妊娠史、饮食史、新冠病毒疾病史、医疗机构数据、社会经济状况以及妊娠结局。所有收集到的数据将汇总到一个公共数据库中。我们将使用人工智能根据受益人的需求预测早期有风险的妊娠结局(包括分娩方式、孕周及相关并发症类型),从而转化为有效的服务提供改进措施,以增加寻求产前护理的孕妇对孕产妇保健服务的利用。拟开展的研究将有助于政策制定者对资源规划、资源分配以及旨在改善孕产妇健康结局的项目和政策的制定进行优先排序。该学术研究已获得印度德拉敦理工学院(DIT大学)大学研究伦理委员会的伦理批准。
该研究于2021年7月4日获得德拉敦DIT大学研究伦理委员会的批准。符合条件的参与者将于2022年4月开始招募,随后在2022年10月至2023年1月期间开发预测模型。拟开发的以公民为中心的人工智能引导工具将采用以人为本的设计原则进行设计、开发、实施和评估,这将有助于预测早期有风险的妊娠结局。
拟议的基于互联网的人工智能引导预测模型将有助于识别与妊娠相关的潜在风险,并增加寻求产前护理以实现安全分娩的人群对孕产妇保健服务的采用。我们将探索拟议平台在不同地理位置的可扩展性,以便在类似及其他健康状况下采用。
国际注册报告识别码(IRRID):PRR1 - 10.2196/35452。