Suppr超能文献

一种用于评估帕金森病患者步态冻结的可解释时空图卷积网络。

An explainable spatial-temporal graphical convolutional network to score freezing of gait in parkinsonian patients.

作者信息

Kwon Hyeokhyen, Clifford Gari D, Genias Imari, Bernhard Doug, Esper Christine D, Factor Stewart A, McKay J Lucas

机构信息

Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, USA.

Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.

出版信息

medRxiv. 2023 Jan 18:2023.01.13.23284535. doi: 10.1101/2023.01.13.23284535.

Abstract

Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (ie. MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N=57 patients during levodopa challenge tests. The proposed model was able to identify kinematic features associated with each FOG severity level that were highly consistent with the features that movement disorders specialists are trained to identify as characteristic of freezing. In this work, we demonstrate that deep learning models' capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures.

摘要

冻结步态(FOG)是一种在帕金森病患者中出现的、尚未被充分理解的异质性步态障碍,它会导致严重的发病率和社交隔离。目前,FOG是通过运动障碍专家通常使用的量表(如MDS-UPDRS)或患者填写的问卷(N-FOG-Q)来测量的,但这两种方法都不足以应对该障碍的异质性,也不适用于临床试验。本研究的目的是设计一种客观测量FOG的方法,从而提高我们识别它并准确评估新疗法的能力。我们使用多任务学习训练了可解释的深度学习模型,以在左旋多巴激发试验期间,利用N = 57例特征明确的患者的运动学数据,同时对FOG进行评分(交叉验证F1分数为97.6%)、识别用药状态(左旋多巴停药与用药;交叉验证F1分数为96.8%)以及测量帕金森病的总体严重程度(MDS-UPDRS-III评分预测误差≤2.7分)。所提出的模型能够识别与每个FOG严重程度水平相关的运动学特征,这些特征与运动障碍专家经培训后识别为冻结特征的特征高度一致。在这项工作中,我们证明了深度学习模型捕捉运动学数据中复杂运动模式的能力可以自动且客观地对FOG进行高精度评分。这些模型有可能发现用于FOG的新型运动学生物标志物,可用于提出假设,并有可能作为临床试验的结果指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a299/9882551/3146627ad525/nihpp-2023.01.13.23284535v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验