Roy Satyajit, Vargas David A, Ma Pengchen, Sengupta Arkajyoti, Zhu Ledong, Houk K N, Fasan Rudi
Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York, 14627, United States.
Current affiliation: Process Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA.
Res Sq. 2023 Jan 19:rs.3.rs-2429100. doi: 10.21203/rs.3.rs-2429100/v1.
Lactam rings are found in many biologically active natural products and pharmaceuticals, including important classes of antibiotics. Given their widespread presence in bioactive molecules, methods for the asymmetric synthesis of these molecules, in particular through the selective functionalization of ubiquitous yet unreactive aliphatic C-H bonds, are highly desirable. In this study, we report the development of a novel strategy for the asymmetric synthesis of 4-, 5-, and 6-membered lactams via an unprecedented hemoprotein-catalyzed intramolecular C-H amidation reaction with readily available dioxazolone reagents. Engineered myoglobin variants serve as excellent biocatalysts for this transformation producing an array of β-, γ-, and δ-lactam molecules in high yields, with high enantioselectivity, and on preparative scale. Mechanistic and computational studies elucidate the nature of the C-H amination and enantiodetermining steps in these reactions and provide insights into protein-mediated control of regioselectivity and stereoselectivity. Using this system, it was possible to accomplish the chemoenzymatic total synthesis of an alkaloid natural product and a drug molecule in much fewer steps (7-8 vs. 11-12) than previously possible, which showcases the power of this biosynthetic strategy toward enabling the preparation of complex bioactive molecules.
内酰胺环存在于许多具有生物活性的天然产物和药物中,包括重要类别的抗生素。鉴于它们在生物活性分子中广泛存在,非常需要不对称合成这些分子的方法,特别是通过对普遍存在但不活泼的脂肪族碳氢键进行选择性官能团化。在本研究中,我们报告了一种通过前所未有的血蛋白催化的分子内碳氢键酰胺化反应,使用易于获得的二恶唑酮试剂,对4元、5元和6元内酰胺进行不对称合成的新策略。工程化的肌红蛋白变体是这种转化的优秀生物催化剂,能够以高产率、高对映选择性在制备规模上生成一系列β-、γ-和δ-内酰胺分子。机理和计算研究阐明了这些反应中碳氢键胺化和对映体决定步骤的本质,并为蛋白质介导的区域选择性和立体选择性控制提供了见解。使用该系统,可以比以前少得多的步骤(7-8步对11-12步)完成生物碱天然产物和药物分子的化学酶法全合成,这展示了这种生物合成策略在制备复杂生物活性分子方面的强大能力。