Suppr超能文献

学习物理一致的粒子相互作用。

Learning physics-consistent particle interactions.

作者信息

Han Zhichao, Kammer David S, Fink Olga

机构信息

Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland.

Laboratory of Intelligent Maintenance and Operations Systems, EPFL, 1015 Lausanne, Switzerland.

出版信息

PNAS Nexus. 2022 Nov 18;1(5):pgac264. doi: 10.1093/pnasnexus/pgac264. eCollection 2022 Nov.

Abstract

Interacting particle systems play a key role in science and engineering. Access to the governing particle interaction law is fundamental for a complete understanding of such systems. However, the inherent system complexity keeps the particle interaction hidden in many cases. Machine learning methods have the potential to learn the behavior of interacting particle systems by combining experiments with data analysis methods. However, most existing algorithms focus on learning the kinetics at the particle level. Learning pairwise interaction, e.g., pairwise force or pairwise potential energy, remains an open challenge. Here, we propose an algorithm that adapts the Graph Networks framework, which contains an edge part to learn the pairwise interaction and a node part to model the dynamics at particle level. Different from existing approaches that use neural networks in both parts, we design a deterministic operator in the node part that allows to precisely infer the pairwise interactions that are consistent with underlying physical laws by only being trained to predict the particle acceleration. We test the proposed methodology on multiple datasets and demonstrate that it achieves superior performance in inferring correctly the pairwise interactions while also being consistent with the underlying physics on all the datasets. While the previously proposed approaches are able to be applied as simulators, they fail to infer physically consistent particle interactions that satisfy Newton's laws. Moreover, the proposed physics-induced graph network for particle interaction also outperforms the other baseline models in terms of generalization ability to larger systems and robustness to significant levels of noise. The developed methodology can support a better understanding and discovery of the underlying particle interaction laws, and hence, guide the design of materials with targeted properties.

摘要

相互作用粒子系统在科学和工程中起着关键作用。掌握粒子相互作用的控制定律是全面理解此类系统的基础。然而,系统固有的复杂性使得粒子相互作用在许多情况下难以直接观测。机器学习方法有潜力通过将实验与数据分析方法相结合来学习相互作用粒子系统的行为。然而,大多数现有算法侧重于学习粒子层面的动力学。学习成对相互作用,例如成对力或成对势能,仍然是一个悬而未决的挑战。在此,我们提出一种算法,它采用了图网络框架,该框架包含一个用于学习成对相互作用的边部分和一个用于在粒子层面建模动力学的节点部分。与在两个部分都使用神经网络的现有方法不同,我们在节点部分设计了一个确定性算子,通过仅训练来预测粒子加速度,就能够精确推断与基础物理定律一致的成对相互作用。我们在多个数据集上测试了所提出的方法,并证明它在正确推断成对相互作用方面具有卓越性能,同时在所有数据集上也与基础物理一致。虽然先前提出的方法能够用作模拟器,但它们无法推断出满足牛顿定律的物理上一致的粒子相互作用。此外,所提出的用于粒子相互作用的物理诱导图网络在对更大系统的泛化能力和对显著噪声水平的鲁棒性方面也优于其他基线模型。所开发的方法可以支持对基础粒子相互作用定律的更好理解和发现,从而指导具有目标特性的材料设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b1/9802333/cc29a142163d/pgac264fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验