Suppr超能文献

一种基于广义似然的贝叶斯方法,用于高维数据中可扩展的联合回归和协方差选择。

A generalized likelihood-based Bayesian approach for scalable joint regression and covariance selection in high dimensions.

作者信息

Samanta Srijata, Khare Kshitij, Michailidis George

机构信息

Department of Statistics, U Florida.

出版信息

Stat Comput. 2022 Jun;32(3). doi: 10.1007/s11222-022-10102-5. Epub 2022 Jun 3.

Abstract

The paper addresses joint sparsity selection in the regression coefficient matrix and the error precision (inverse covariance) matrix for high-dimensional multivariate regression models in the Bayesian paradigm. The selected sparsity patterns are crucial to help understand the network of relationships between the predictor and response variables, as well as the conditional relationships among the latter. While Bayesian methods have the advantage of providing natural uncertainty quantification through posterior inclusion probabilities and credible intervals, current Bayesian approaches either restrict to specific sub-classes of sparsity patterns and/or are not scalable to settings with hundreds of responses and predictors. Bayesian approaches which only focus on estimating the posterior mode are scalable, but do not generate samples from the posterior distribution for uncertainty quantification. Using a bi-convex regression based generalized likelihood and spike-and-slab priors, we develop an algorithm called Joint Regression Network Selector (JRNS) for joint regression and covariance selection which (a) can accommodate general sparsity patterns, (b) provides posterior samples for uncertainty quantification, and (c) is scalable and orders of magnitude faster than the state-of-the-art Bayesian approaches providing uncertainty quantification. We demonstrate the statistical and computational efficacy of the proposed approach on synthetic data and through the analysis of selected cancer data sets. We also establish high-dimensional posterior consistency for one of the developed algorithms.

摘要

本文探讨了贝叶斯范式下高维多元回归模型中回归系数矩阵和误差精度(逆协方差)矩阵的联合稀疏性选择问题。所选的稀疏模式对于帮助理解预测变量与响应变量之间的关系网络以及后者之间的条件关系至关重要。虽然贝叶斯方法具有通过后验包含概率和可信区间提供自然不确定性量化的优势,但当前的贝叶斯方法要么局限于特定的稀疏模式子类,要么无法扩展到具有数百个响应和预测变量的设置。仅专注于估计后验模式的贝叶斯方法具有可扩展性,但不会从后验分布生成样本以进行不确定性量化。使用基于双凸回归的广义似然和尖峰和平板先验,我们开发了一种名为联合回归网络选择器(JRNS)的算法,用于联合回归和协方差选择,该算法(a)可以适应一般的稀疏模式,(b)提供用于不确定性量化的后验样本,并且(c)具有可扩展性,比提供不确定性量化的最新贝叶斯方法快几个数量级。我们通过对合成数据的分析以及对选定癌症数据集的分析,证明了所提出方法的统计和计算有效性。我们还为所开发的算法之一建立了高维后验一致性。

相似文献

2
Joint high-dimensional Bayesian variable and covariance selection with an application to eQTL analysis.
Biometrics. 2013 Jun;69(2):447-57. doi: 10.1111/biom.12021. Epub 2013 Apr 22.
4
Bayesian sparse reduced rank multivariate regression.
J Multivar Anal. 2017 May;157:14-28. doi: 10.1016/j.jmva.2017.02.007. Epub 2017 Mar 4.
6
Bayesian Lesion Estimation with a Structured Spike-and-Slab Prior.
J Am Stat Assoc. 2024;119(545):66-80. doi: 10.1080/01621459.2023.2278201. Epub 2024 Jan 8.
7
Consistent high-dimensional Bayesian variable selection via penalized credible regions.
J Am Stat Assoc. 2012 Dec 21;107(500):1610-1624. doi: 10.1080/01621459.2012.716344. Epub 2012 Aug 14.
8
Sparsifying priors for Bayesian uncertainty quantification in model discovery.
R Soc Open Sci. 2022 Feb 23;9(2):211823. doi: 10.1098/rsos.211823. eCollection 2022 Feb.
10
The spike-and-slab lasso and scalable algorithm to accommodate multinomial outcomes in variable selection problems.
J Appl Stat. 2023 Sep 14;51(11):2039-2061. doi: 10.1080/02664763.2023.2258301. eCollection 2024.

引用本文的文献

1
Covariate-Assisted Bayesian Graph Learning for Heterogeneous Data.
J Am Stat Assoc. 2024;119(547):1985-1999. doi: 10.1080/01621459.2023.2233744. Epub 2023 Sep 6.

本文引用的文献

1
Bayesian Structure Learning in Multi-layered Genomic Networks.
J Am Stat Assoc. 2021;116(534):605-618. doi: 10.1080/01621459.2020.1775611. Epub 2020 Jul 24.
2
Approximate Bayesian Inference.
Entropy (Basel). 2020 Nov 10;22(11):1272. doi: 10.3390/e22111272.
3
Estimation of High-Dimensional Graphical Models Using Regularized Score Matching.
Electron J Stat. 2016;10(1):806-854. doi: 10.1214/16-EJS1126. Epub 2016 Apr 6.
4
Covariate-Adjusted Precision Matrix Estimation with an Application in Genetical Genomics.
Biometrika. 2013 Mar;100(1):139-156. doi: 10.1093/biomet/ass058. Epub 2012 Nov 30.
5
A general framework for updating belief distributions.
J R Stat Soc Series B Stat Methodol. 2016 Nov;78(5):1103-1130. doi: 10.1111/rssb.12158. Epub 2016 Feb 23.
6
Signaling mechanisms of the epithelial-mesenchymal transition.
Sci Signal. 2014 Sep 23;7(344):re8. doi: 10.1126/scisignal.2005189.
7
Sparse Multivariate Regression With Covariance Estimation.
J Comput Graph Stat. 2010 Fall;19(4):947-962. doi: 10.1198/jcgs.2010.09188.
8
Joint high-dimensional Bayesian variable and covariance selection with an application to eQTL analysis.
Biometrics. 2013 Jun;69(2):447-57. doi: 10.1111/biom.12021. Epub 2013 Apr 22.
9
Simultaneous Multiple Response Regression and Inverse Covariance Matrix Estimation via Penalized Gaussian Maximum Likelihood.
J Multivar Anal. 2012 Oct 1;111:241-255. doi: 10.1016/j.jmva.2012.03.013. Epub 2012 Apr 27.
10
Partial Correlation Estimation by Joint Sparse Regression Models.
J Am Stat Assoc. 2009 Jun 1;104(486):735-746. doi: 10.1198/jasa.2009.0126.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验