Suppr超能文献

急性胰腺炎患者生存预测列线图的开发与验证

Development and validation of a nomogram for predicting survival in patients with acute pancreatitis.

作者信息

Zhu Xiao-Guang, Jiang Jia-Mei, Li Yong-Xia, Gao Jing, Wu Wei, Feng Qi-Ming

机构信息

Department of Emergency Medicine, Shanghai Jiao Tong University Affi liated Sixth People's Hospital, Shanghai 200233, China.

出版信息

World J Emerg Med. 2023;14(1):44-48. doi: 10.5847/wjem.j.1920-8642.2023.022.

Abstract

BACKGROUND

Acute pancreatitis (AP) is a complex and heterogeneous disease. We aimed to design and validate a prognostic nomogram for improving the prediction of short-term survival in patients with AP.

METHODS

The clinical data of 632 patients with AP were obtained from the Medical Information Mart for Intensive Care (MIMIC)-IV database. The nomogram for the prediction of 30-day, 60-day and 90-day survival was developed by incorporating the risk factors identified by multivariate Cox analyses.

RESULTS

Multivariate Cox proportional hazard model analysis showed that age (hazard ratio [HR]=1.06, 95% confidence interval [95% CI] 1.03-1.08, P<0.001), white blood cell count (HR=1.03, 95% CI 1.00-1.06, P=0.046), systolic blood pressure (HR=0.99, 95% CI 0.97-1.00, P=0.015), serum lactate level (HR=1.10, 95% CI 1.01-1.20, P=0.023), and Simplified Acute Physiology Score II (HR=1.04, 95% CI 1.02-1.06, P<0.001) were independent predictors of 90-day mortality in patients with AP. A prognostic nomogram model for 30-day, 60-day, and 90-day survival based on these variables was built. Receiver operating characteristic (ROC) curve analysis demonstrated that the nomogram had good accuracy for predicting 30-day, 60-day, and 90-day survival (area under the ROC curve: 0.796, 0.812, and 0.854, respectively; bootstrap-corrected C-index value: 0.782, 0.799, and 0.846, respectively).

CONCLUSION

The nomogram-based prognostic model was able to accurately predict 30-day, 60-day, and 90-day survival outcomes and thus may be of value for risk stratification and clinical decision-making for critically ill patients with AP.

摘要

背景

急性胰腺炎(AP)是一种复杂的异质性疾病。我们旨在设计并验证一种预后列线图,以改善对AP患者短期生存的预测。

方法

从重症监护医学信息数据库(MIMIC-IV)中获取632例AP患者的临床数据。通过纳入多变量Cox分析确定的危险因素,构建预测30天、60天和90天生存的列线图。

结果

多变量Cox比例风险模型分析显示,年龄(风险比[HR]=1.06,95%置信区间[95%CI]1.03-1.08,P<0.001)、白细胞计数(HR=1.03,95%CI 1.00-1.06,P=0.046)、收缩压(HR=0.99,95%CI 0.97-1.00,P=0.015)、血清乳酸水平(HR=1.10,95%CI 1.01-1.20,P=0.023)和简化急性生理学评分II(HR=1.04,95%CI 1.02-1.06,P<0.001)是AP患者90天死亡率的独立预测因素。基于这些变量构建了30天、60天和90天生存的预后列线图模型。受试者工作特征(ROC)曲线分析表明,该列线图在预测30天、60天和90天生存方面具有良好的准确性(ROC曲线下面积分别为0.796、0.812和0.854;自抽样校正C指数值分别为0.782、0.799和0.846)。

结论

基于列线图的预后模型能够准确预测30天、60天和90天的生存结果,因此可能对AP重症患者的风险分层和临床决策具有价值。

相似文献

本文引用的文献

4
Acute pancreatitis.急性胰腺炎。
Lancet. 2020 Sep 5;396(10252):726-734. doi: 10.1016/S0140-6736(20)31310-6.
7
Assessment of severity of acute pancreatitis over time.急性胰腺炎严重程度随时间的评估。
Rom J Intern Med. 2020 Jun 1;58(2):47-54. doi: 10.2478/rjim-2020-0003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验