Suppr超能文献

促进植物生长的根际细菌:缓解盐胁迫以提高作物生产力,促进可持续农业发展。

Plant growth-promoting rhizobacteria: Salt stress alleviators to improve crop productivity for sustainable agriculture development.

作者信息

Kumawat Kailash Chand, Sharma Barkha, Nagpal Sharon, Kumar Ajay, Tiwari Shalini, Nair Ramakrishnan Madhavan

机构信息

Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India.

Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India.

出版信息

Front Plant Sci. 2023 Jan 12;13:1101862. doi: 10.3389/fpls.2022.1101862. eCollection 2022.

Abstract

Soil salinity, a growing issue worldwide, is a detrimental consequence of the ever-changing climate, which has highlighted and worsened the conditions associated with damaged soil quality, reduced agricultural production, and decreasing land areas, thus resulting in an unsteady national economy. In this review, halo-tolerant plant growth-promoting rhizo-microbiomes (PGPRs) are evaluated in the salinity-affected agriculture as they serve as excellent agents in controlling various biotic-abiotic stresses and help in the augmentation of crop productivity. Integrated efforts of these effective microbes lighten the load of agro-chemicals on the environment while managing nutrient availability. PGPR-assisted modern agriculture practices have emerged as a green strategy to benefit sustainable farming without compromising the crop yield under salinity as well as salinity-affected supplementary stresses including increased temperature, drought, salinity, and potential invasive plant pathogenicity. PGPRs as bio-inoculants impart induced systemic tolerance (IST) to plants by the production of volatile organic compounds (VOCs), antioxidants, osmolytes, extracellular polymeric substances (EPS), phytohormones, and ACC-deaminase and recuperation of nutritional status and ionic homeostasis. Regulation of PGPR-induced signaling pathways such as MAPK and CDPK assists in salinity stress alleviation. The "Next Gen Agriculture" consists of the application of designer crop microbiomes through gene editing tools, for instance, CRISPR, and engineering of the metabolic pathways of the microbes so as to gain maximum plant resistance. The utilization of omics technologies over the traditional approaches can fulfill the criteria required to increase crop yields in a sustainable manner for feeding the burgeoning population and augment plant adaptability under climate change conditions, ultimately leading to improved vitality. Furthermore, constraints such as the crop specificity issue of PGPR, lack of acceptance by farmers, and legal regulatory aspects have been acknowledged while also discussing the future trends for product commercialization with the view of the changing climate.

摘要

土壤盐渍化是一个在全球范围内日益严重的问题,是气候变化不断加剧的有害后果,这凸显并恶化了与土壤质量受损、农业产量下降和土地面积减少相关的状况,从而导致国民经济不稳定。在本综述中,耐盐促生根际微生物群(PGPRs)在受盐渍化影响的农业中得到评估,因为它们是控制各种生物和非生物胁迫的优秀因子,并有助于提高作物生产力。这些有效微生物的综合作用在管理养分有效性的同时,减轻了农用化学品对环境的负担。PGPR辅助的现代农业实践已成为一种绿色战略,有利于可持续农业发展,同时在盐渍化以及受盐渍化影响的附加胁迫(包括温度升高、干旱、盐渍化和潜在的入侵植物致病性)下不影响作物产量。作为生物接种剂的PGPRs通过产生挥发性有机化合物(VOCs)、抗氧化剂、渗透调节物质、细胞外聚合物(EPS)、植物激素和ACC脱氨酶以及恢复营养状况和离子稳态,赋予植物诱导系统耐受性(IST)。PGPR诱导的信号通路(如MAPK和CDPK)的调节有助于缓解盐胁迫。“下一代农业”包括通过基因编辑工具(如CRISPR)应用设计作物微生物群,以及对微生物代谢途径进行工程改造,以获得最大的植物抗性。与传统方法相比,组学技术的应用可以满足以可持续方式提高作物产量以养活不断增长的人口以及增强植物在气候变化条件下的适应性的要求,最终提高活力。此外,在讨论产品商业化的未来趋势时,也认识到了诸如PGPR的作物特异性问题、农民接受度不足和法律法规方面等限制因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d85b/9878403/21ca87b63e30/fpls-13-1101862-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验