Suppr超能文献

用于学习可变形医学图像配准的坐标转换器

Coordinate Translator for Learning Deformable Medical Image Registration.

作者信息

Liu Yihao, Zuo Lianrui, Han Shuo, Xue Yuan, Prince Jerry L, Carass Aaron

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institute of Health, Baltimore, MD 20892, USA.

出版信息

Multiscale Multimodal Med Imaging (2022). 2022 Sep;13594:98-109. doi: 10.1007/978-3-031-18814-5_10. Epub 2022 Oct 12.

Abstract

The majority of deep learning (DL) based deformable image registration methods use convolutional neural networks (CNNs) to estimate displacement fields from pairs of moving and fixed images. This, however, requires the convolutional kernels in the CNN to not only extract intensity features from the inputs but also understand image coordinate systems. We argue that the latter task is challenging for traditional CNNs, limiting their performance in registration tasks. To tackle this problem, we first introduce Coordinate Translator, a differentiable module that identifies matched features between the fixed and moving image and outputs their coordinate correspondences without the need for training. It unloads the burden of understanding image coordinate systems for CNNs, allowing them to focus on feature extraction. We then propose a novel deformable registration network, im2grid, that uses multiple Coordinate Translator's with the hierarchical features extracted from a CNN encoder and outputs a deformation field in a coarse-to-fine fashion. We compared im2grid with the state-of-the-art DL and non-DL methods for unsupervised 3D magnetic resonance image registration. Our experiments show that im2grid outperforms these methods both qualitatively and quantitatively.

摘要

大多数基于深度学习(DL)的可变形图像配准方法使用卷积神经网络(CNN)从移动图像和固定图像对中估计位移场。然而,这要求CNN中的卷积核不仅要从输入中提取强度特征,还要理解图像坐标系。我们认为,后一项任务对传统CNN来说具有挑战性,限制了它们在配准任务中的性能。为了解决这个问题,我们首先引入坐标转换器(Coordinate Translator),这是一个可微模块,它可以识别固定图像和移动图像之间的匹配特征,并输出它们的坐标对应关系,而无需训练。它减轻了CNN理解图像坐标系的负担,使它们能够专注于特征提取。然后,我们提出了一种新颖的可变形配准网络im2grid,它使用多个坐标转换器以及从CNN编码器提取的分层特征,并以粗到细的方式输出变形场。我们将im2grid与用于无监督3D磁共振图像配准的最新DL和非DL方法进行了比较。我们的实验表明,im2grid在定性和定量方面均优于这些方法。

相似文献

1
Coordinate Translator for Learning Deformable Medical Image Registration.用于学习可变形医学图像配准的坐标转换器
Multiscale Multimodal Med Imaging (2022). 2022 Sep;13594:98-109. doi: 10.1007/978-3-031-18814-5_10. Epub 2022 Oct 12.
10
Hierarchical cumulative network for unsupervised medical image registration.用于无监督医学图像配准的分层累积网络。
Comput Biol Med. 2023 Dec;167:107598. doi: 10.1016/j.compbiomed.2023.107598. Epub 2023 Oct 21.

引用本文的文献

1
On Finite Difference Jacobian Computation in Deformable Image Registration.关于可变形图像配准中的有限差分雅可比矩阵计算
Int J Comput Vis. 2024 Sep;132(9):3678-3688. doi: 10.1007/s11263-024-02047-1. Epub 2024 Apr 18.
3
Vector field attention for deformable image registration.用于可变形图像配准的向量场注意力
J Med Imaging (Bellingham). 2024 Nov;11(6):064001. doi: 10.1117/1.JMI.11.6.064001. Epub 2024 Nov 6.

本文引用的文献

5
3D whole brain segmentation using spatially localized atlas network tiles.使用空间局部化图谱网络瓦片进行 3D 全脑分割。
Neuroimage. 2019 Jul 1;194:105-119. doi: 10.1016/j.neuroimage.2019.03.041. Epub 2019 Mar 23.
8
Deformable Image Registration based on Similarity-Steered CNN Regression.基于相似性引导卷积神经网络回归的可变形图像配准
Med Image Comput Comput Assist Interv. 2017 Sep;10433:300-308. doi: 10.1007/978-3-319-66182-7_35. Epub 2017 Sep 4.
9
Quicksilver: Fast predictive image registration - A deep learning approach.快银:快速预测图像配准 - 深度学习方法。
Neuroimage. 2017 Sep;158:378-396. doi: 10.1016/j.neuroimage.2017.07.008. Epub 2017 Jul 11.
10
2D/3D Image Registration using Regression Learning.使用回归学习的二维/三维图像配准
Comput Vis Image Underst. 2013 Sep 1;117(9):1095-1106. doi: 10.1016/j.cviu.2013.02.009.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验