Liu Yihao, Zuo Lianrui, Han Shuo, Xue Yuan, Prince Jerry L, Carass Aaron
Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institute of Health, Baltimore, MD 20892, USA.
Multiscale Multimodal Med Imaging (2022). 2022 Sep;13594:98-109. doi: 10.1007/978-3-031-18814-5_10. Epub 2022 Oct 12.
The majority of deep learning (DL) based deformable image registration methods use convolutional neural networks (CNNs) to estimate displacement fields from pairs of moving and fixed images. This, however, requires the convolutional kernels in the CNN to not only extract intensity features from the inputs but also understand image coordinate systems. We argue that the latter task is challenging for traditional CNNs, limiting their performance in registration tasks. To tackle this problem, we first introduce Coordinate Translator, a differentiable module that identifies matched features between the fixed and moving image and outputs their coordinate correspondences without the need for training. It unloads the burden of understanding image coordinate systems for CNNs, allowing them to focus on feature extraction. We then propose a novel deformable registration network, im2grid, that uses multiple Coordinate Translator's with the hierarchical features extracted from a CNN encoder and outputs a deformation field in a coarse-to-fine fashion. We compared im2grid with the state-of-the-art DL and non-DL methods for unsupervised 3D magnetic resonance image registration. Our experiments show that im2grid outperforms these methods both qualitatively and quantitatively.
大多数基于深度学习(DL)的可变形图像配准方法使用卷积神经网络(CNN)从移动图像和固定图像对中估计位移场。然而,这要求CNN中的卷积核不仅要从输入中提取强度特征,还要理解图像坐标系。我们认为,后一项任务对传统CNN来说具有挑战性,限制了它们在配准任务中的性能。为了解决这个问题,我们首先引入坐标转换器(Coordinate Translator),这是一个可微模块,它可以识别固定图像和移动图像之间的匹配特征,并输出它们的坐标对应关系,而无需训练。它减轻了CNN理解图像坐标系的负担,使它们能够专注于特征提取。然后,我们提出了一种新颖的可变形配准网络im2grid,它使用多个坐标转换器以及从CNN编码器提取的分层特征,并以粗到细的方式输出变形场。我们将im2grid与用于无监督3D磁共振图像配准的最新DL和非DL方法进行了比较。我们的实验表明,im2grid在定性和定量方面均优于这些方法。