Liu Yuan, Gui Zhuolan, Yan De, Wang Zhuang, Gao Ruisi, Han Ningxin, Chen Junying, Wu Jialing, Ming Dong
the Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
the Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300384, China.
Sci Data. 2025 Feb 21;12(1):314. doi: 10.1038/s41597-025-04618-4.
Motor dysfunction is one of the most significant sequelae of stroke, with lower limb impairment being a major concern for stroke patients. Motor imagery (MI) technology based on brain-computer interface (BCI) offers promising rehabilitation potential for stroke patients by activating motor-related brain areas. However, developing a robust BCI-MI system and uncovering the underlying mechanisms of neural plasticity during stroke recovery through such systems requires large-scale datasets. These datasets are particularly needed for accurate lower limb MI in stroke patients and for longitudinal data reflecting the rehabilitation process. This study addresses this gap by collecting EEG data from 27 stroke patients, covering two enhanced paradigms and three different time points. The dataset includes raw EEG signals, preprocessed data, and patient information. An initial analysis using CSP-SVM on the dataset yielded an average classification accuracy of 80.50%. We anticipate that this dataset will facilitate research into brain neuroplasticity in stroke patients, aid in the development of decoding algorithms for lower limb stroke, and contribute to the establishment of comprehensive stroke rehabilitation systems.
运动功能障碍是中风最严重的后遗症之一,下肢损伤是中风患者主要关注的问题。基于脑机接口(BCI)的运动想象(MI)技术通过激活与运动相关的脑区,为中风患者提供了有前景的康复潜力。然而,开发一个强大的BCI-MI系统,并通过这样的系统揭示中风恢复过程中神经可塑性的潜在机制,需要大规模数据集。这些数据集对于中风患者准确的下肢运动想象以及反映康复过程的纵向数据尤为必要。本研究通过收集27名中风患者的脑电图数据来填补这一空白,涵盖两种增强范式和三个不同时间点。该数据集包括原始脑电图信号、预处理数据和患者信息。使用CSP-SVM对该数据集进行的初步分析得出平均分类准确率为80.50%。我们预计该数据集将促进对中风患者脑神经可塑性的研究,有助于开发下肢中风解码算法,并为建立全面的中风康复系统做出贡献。