School of Information Science and Engineering, Lanzhou University, China.
School of Information Science and Engineering, Lanzhou University, China.
Comput Biol Med. 2023 Mar;154:106580. doi: 10.1016/j.compbiomed.2023.106580. Epub 2023 Jan 25.
The computer-aided diagnosis system based on dermoscopic images has played an important role in the clinical treatment of skin lesion. An accurate, efficient, and automatic skin lesion segmentation method is an important auxiliary tool for clinical diagnosis. At present, skin lesion segmentation still suffers from great challenges. Existing deep-learning-based automatic segmentation methods frequently use convolutional neural networks (CNN). However, the globally-sharing feature re-weighting vector may not be optimal for the prediction of lesion areas in dermoscopic images. The presence of hairs and spots in some samples aggravates the interference of similar categories, and reduces the segmentation accuracy. To solve this problem, this paper proposes a new deep network for precise skin lesion segmentation based on a U-shape structure. To be specific, two lightweight attention modules: adaptive channel-context-aware pyramid attention (ACCAPA) module and global feature fusion (GFF) module, are embedded in the network. The ACCAPA module can model the characteristics of the lesion areas by dynamically learning the channel information, contextual information and global structure information. GFF is used for different levels of semantic information interaction between encoder and decoder layers. To validate the effectiveness of the proposed method, we test the performance of ACCPG-Net on several public skin lesion datasets. The results show that our method achieves better segmentation performance compared to other state-of-the-art methods.
基于皮肤镜图像的计算机辅助诊断系统在皮肤病变的临床治疗中发挥了重要作用。准确、高效、自动的皮肤病变分割方法是临床诊断的重要辅助工具。目前,皮肤病变分割仍然面临着巨大的挑战。现有的基于深度学习的自动分割方法经常使用卷积神经网络(CNN)。然而,全局共享的特征重加权向量对于皮肤镜图像中病变区域的预测可能不是最优的。在一些样本中存在毛发和斑点,这加剧了相似类别的干扰,降低了分割精度。为了解决这个问题,本文提出了一种新的基于 U 形结构的精确皮肤病变分割深度网络。具体来说,在网络中嵌入了两个轻量级的注意力模块:自适应通道上下文感知金字塔注意力(ACCAPA)模块和全局特征融合(GFF)模块。ACCAPA 模块可以通过动态学习通道信息、上下文信息和全局结构信息来对病变区域的特征进行建模。GFF 用于编码器和解码器层之间不同层次的语义信息交互。为了验证所提出方法的有效性,我们在几个公共皮肤病变数据集上测试了 ACCPG-Net 的性能。结果表明,与其他最先进的方法相比,我们的方法实现了更好的分割性能。