School of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China.
Sensors (Basel). 2024 Aug 20;24(16):5372. doi: 10.3390/s24165372.
Automated segmentation algorithms for dermoscopic images serve as effective tools that assist dermatologists in clinical diagnosis. While existing deep learning-based skin lesion segmentation algorithms have achieved certain success, challenges remain in accurately delineating the boundaries of lesion regions in dermoscopic images with irregular shapes, blurry edges, and occlusions by artifacts. To address these issues, a multi-attention codec network with selective and dynamic fusion (MASDF-Net) is proposed for skin lesion segmentation in this study. In this network, we use the pyramid vision transformer as the encoder to model the long-range dependencies between features, and we innovatively designed three modules to further enhance the performance of the network. Specifically, the multi-attention fusion (MAF) module allows for attention to be focused on high-level features from various perspectives, thereby capturing more global contextual information. The selective information gathering (SIG) module improves the existing skip-connection structure by eliminating the redundant information in low-level features. The multi-scale cascade fusion (MSCF) module dynamically fuses features from different levels of the decoder part, further refining the segmentation boundaries. We conducted comprehensive experiments on the ISIC 2016, ISIC 2017, ISIC 2018, and PH2 datasets. The experimental results demonstrate the superiority of our approach over existing state-of-the-art methods.
自动分割算法为皮肤科医生的临床诊断提供了有效的工具。现有的基于深度学习的皮肤病变分割算法已经取得了一定的成功,但在精确描绘皮肤科图像中形状不规则、边缘模糊和伪影遮挡的病变区域边界方面仍然存在挑战。针对这些问题,本研究提出了一种具有选择性和动态融合的多注意力编解码器网络(MASDF-Net)用于皮肤病变分割。在该网络中,我们使用金字塔视觉转换器作为编码器来对特征之间的长程依赖关系进行建模,并创新性地设计了三个模块来进一步提高网络的性能。具体来说,多注意力融合(MAF)模块允许从多个角度集中注意力于高级特征,从而捕获更多的全局上下文信息。选择性信息收集(SIG)模块通过消除低级特征中的冗余信息改进了现有的 skip-connection 结构。多尺度级联融合(MSCF)模块动态融合解码器部分不同层次的特征,进一步细化分割边界。我们在 ISIC 2016、ISIC 2017、ISIC 2018 和 PH2 数据集上进行了全面的实验。实验结果表明,我们的方法优于现有的最先进的方法。