Kriukov Dmitrii V, Huskens Jurriaan, Wong Albert S Y
Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands.
MESA+ Institute, University of Twente, Enschede, the Netherlands.
Nat Commun. 2024 Sep 27;15(1):8289. doi: 10.1038/s41467-024-52649-z.
Networks of chemical reactions exhibit emergent properties under out-of-equilibrium conditions. Recent advances in systems chemistry demonstrate that networks with sufficient chemical complexity can be harnessed to emulate properties important for neuromorphic computing. In all examples, autocatalysis appears an essential element for facilitating the nonlinear integration of the input and self-regulatory abilities in the output. How this chemical analogue of a positive feedback mechanism can be controlled in a programmable manner is, however, unexplored. Here, we develop a strategy that uses metal ions (Ca, La, and Nd) to control the rate of a trypsin-catalysed autocatalytic reaction network. We demonstrate that this type of control allows for tuning the kinetics in the network, thereby changing the nature of the positive feedback. The simulations and experiments reveal that an input with one or more metal ions allow for temporal and history-dependent outputs that can be mapped onto a variety of mathematical functions.
化学反应网络在非平衡条件下表现出涌现特性。系统化学的最新进展表明,具有足够化学复杂性的网络可用于模拟对神经形态计算重要的特性。在所有实例中,自催化似乎是促进输入的非线性整合和输出中的自我调节能力的关键要素。然而,这种正反馈机制的化学类似物如何以可编程方式进行控制尚未得到探索。在此,我们开发了一种策略,利用金属离子(钙、镧和钕)来控制胰蛋白酶催化的自催化反应网络的速率。我们证明,这种控制类型能够调节网络中的动力学,从而改变正反馈的性质。模拟和实验表明,含有一种或多种金属离子的输入可产生与时间和历史相关的输出,这些输出可映射到各种数学函数上。