Suppr超能文献

基于深度学习的拉曼光谱法对冠状病毒刺突蛋白的分类及其解释性分析

Classification of Coronavirus Spike Proteins by Deep-Learning-Based Raman Spectroscopy and its Interpretative Analysis.

作者信息

Mo Wenbo, Wen Jiaxing, Huang Jinglin, Yang Yue, Zhou Minjie, Ni Shuang, Le Wei, Wei Lai, Qi Daojian, Wang Shaoyi, Su Jingqin, Wu Yuchi, Zhou Weimin, Du Kai, Wang Xuewu, Zhao Zongqing

机构信息

Laser Fusion Research Center at China Academy of Engineering Physics, Mianyang, China.

Department of Engineering Physics, Tsinghua University, Beijing, China.

出版信息

J Appl Spectrosc. 2023;89(6):1203-1211. doi: 10.1007/s10812-023-01487-w. Epub 2023 Jan 26.

Abstract

The outbreak of COVID-19 has spread worldwide, causing great damage to the global economy. Raman spectroscopy is expected to become a rapid and accurate method for the detection of coronavirus. A classification method of coronavirus spike proteins by Raman spectroscopy based on deep learning was implemented. A Raman spectra dataset of the spike proteins of five coronaviruses (including MERS-CoV, SARS-CoV, SARS-CoV-2, HCoVHKU1, and HCoV-OC43) was generated to establish the neural network model for classification. Even for rapidly acquired spectra with a low signal-to-noise ratio, the average accuracy exceeded 97%. An interpretive analysis of the classification results of the neural network was performed, which indicated that the differences in spectral characteristics captured by the neural network were consistent with the experimental analysis. The interpretative analysis method provided a valuable reference for identifying complex Raman spectra using deep-learning techniques. Our approach exhibited the potential to be applied in clinical practice to identify COVID-19 and other coronaviruses, and it can also be applied to other identification problems such as the identification of viruses or chemical agents, as well as in industrial areas such as oil and gas exploration.

摘要

新型冠状病毒肺炎(COVID-19)疫情已在全球蔓延,给全球经济造成了巨大破坏。拉曼光谱有望成为一种快速、准确检测冠状病毒的方法。基于深度学习实现了一种利用拉曼光谱对冠状病毒刺突蛋白进行分类的方法。生成了包含五种冠状病毒(中东呼吸综合征冠状病毒、严重急性呼吸综合征冠状病毒、严重急性呼吸综合征冠状病毒2、人冠状病毒HKU1和人冠状病毒OC43)刺突蛋白的拉曼光谱数据集,以建立用于分类的神经网络模型。即使对于快速获取的低信噪比光谱,平均准确率也超过了97%。对神经网络的分类结果进行了解释性分析,结果表明神经网络捕捉到的光谱特征差异与实验分析一致。该解释性分析方法为利用深度学习技术识别复杂拉曼光谱提供了有价值的参考。我们的方法显示出在临床实践中用于识别COVID-19和其他冠状病毒的潜力,也可应用于其他识别问题,如病毒或化学制剂的识别,以及石油和天然气勘探等工业领域。

相似文献

10
Current Strategies of Antiviral Drug Discovery for COVID-19.新型冠状病毒肺炎抗病毒药物研发的当前策略
Front Mol Biosci. 2021 May 13;8:671263. doi: 10.3389/fmolb.2021.671263. eCollection 2021.

本文引用的文献

2
An overview on the seven pathogenic human coronaviruses.七种人类致病冠状病毒概述。
Rev Med Virol. 2022 Mar;32(2):e2282. doi: 10.1002/rmv.2282. Epub 2021 Aug 2.
6
COVID-19 Antibody Tests and Their Limitations.新型冠状病毒抗体检测及其局限性。
ACS Sens. 2021 Mar 26;6(3):593-612. doi: 10.1021/acssensors.0c02621. Epub 2021 Feb 5.
7
The role of biosensors in coronavirus disease-2019 outbreak.生物传感器在2019冠状病毒病疫情中的作用。
Curr Opin Electrochem. 2020 Oct;23:174-184. doi: 10.1016/j.coelec.2020.08.011. Epub 2020 Sep 18.
8
Molecular Architecture of the SARS-CoV-2 Virus.SARS-CoV-2 病毒的分子结构。
Cell. 2020 Oct 29;183(3):730-738.e13. doi: 10.1016/j.cell.2020.09.018. Epub 2020 Sep 6.
10
Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses.SARS-CoV-2 和其他人类冠状病毒的致病性的基因组决定因素。
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):15193-15199. doi: 10.1073/pnas.2008176117. Epub 2020 Jun 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验