Suppr超能文献

用于神经网络硬件实现的高扩展和全集成三维铁电晶体管阵列。

Highly-scaled and fully-integrated 3-dimensional ferroelectric transistor array for hardware implementation of neural networks.

机构信息

Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.

出版信息

Nat Commun. 2023 Jan 31;14(1):504. doi: 10.1038/s41467-023-36270-0.

Abstract

Hardware-based neural networks (NNs) can provide a significant breakthrough in artificial intelligence applications due to their ability to extract features from unstructured data and learn from them. However, realizing complex NN models remains challenging because different tasks, such as feature extraction and classification, should be performed at different memory elements and arrays. This further increases the required number of memory arrays and chip size. Here, we propose a three-dimensional ferroelectric NAND (3D FeNAND) array for the area-efficient hardware implementation of NNs. Vector-matrix multiplication is successfully demonstrated using the integrated 3D FeNAND arrays, and excellent pattern classification is achieved. By allocating each array of vertical layers in 3D FeNAND as the hidden layer of NN, each layer can be used to perform different tasks, and the classification of color-mixed patterns is achieved. This work provides a practical strategy to realize high-performance and highly efficient NN systems by stacking computation components vertically.

摘要

基于硬件的神经网络 (NN) 因其能够从非结构化数据中提取特征并从中学习,可为人工智能应用提供重大突破。然而,实现复杂的 NN 模型仍然具有挑战性,因为不同的任务,如特征提取和分类,应该在不同的存储单元和数组中执行。这进一步增加了所需的存储数组数量和芯片尺寸。在这里,我们提出了一种用于 NN 硬件实现的三维铁电 NAND (3D FeNAND) 阵列。使用集成的 3D FeNAND 阵列成功地演示了矢量矩阵乘法,并实现了出色的模式分类。通过将 3D FeNAND 中每个垂直层的数组分配为 NN 的隐藏层,每个层都可以用于执行不同的任务,并实现了彩色混合模式的分类。这项工作通过垂直堆叠计算组件提供了一种实现高性能和高效率 NN 系统的实用策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f420/9889761/8e14fc9af7cd/41467_2023_36270_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验