Suppr超能文献

机器学习辅助七波段太赫兹超材料吸收体在生物医学中的应用。

Machine learning assisted hepta band THz metamaterial absorber for biomedical applications.

机构信息

Department of Mechatronics Engineering, Parul University, Vadodara, Gujarat, India.

Department of Electronics and Communication Engineering, Parul University, Vadodara, Gujarat, India.

出版信息

Sci Rep. 2023 Jan 31;13(1):1792. doi: 10.1038/s41598-023-29024-x.

Abstract

A hepta-band terahertz metamaterial absorber (MMA) with modified dual T-shaped resonators deposited on polyimide is presented for sensing applications. The proposed polarization sensitive MMA is ultra-thin (0.061 λ) and compact (0.21 λ) at its lowest operational frequency, with multiple absorption peaks at 1.89, 4.15, 5.32, 5.84, 7.04, 8.02, and 8.13 THz. The impedance matching theory and electric field distribution are investigated to understand the physical mechanism of hepta-band absorption. The sensing functionality is evaluated using a surrounding medium with a refractive index between 1 and 1.1, resulting in good Quality factor (Q) value of 117. The proposed sensor has the highest sensitivity of 4.72 THz/RIU for glucose detection. Extreme randomized tree (ERT) model is utilized to predict absorptivities for intermediate frequencies with unit cell dimensions, substrate thickness, angle variation, and refractive index values to reduce simulation time. The effectiveness of the ERT model in predicting absorption values is evaluated using the Adjusted R score, which is close to 1.0 for n = 2, demonstrating the prediction efficiency in various test cases. The experimental results show that 60% of simulation time and resources can be saved by simulating absorber design using the ERT model. The proposed MMA sensor with an ERT model has potential applications in biomedical fields such as bacterial infections, malaria, and other diseases.

摘要

一种基于聚酰亚胺上沉积的改进型双 T 形谐振器的七波段太赫兹超材料吸收体(MMA),可用于传感应用。所提出的偏振敏感 MMA 在其最低工作频率下非常薄(0.061λ)且紧凑(0.21λ),在 1.89、4.15、5.32、5.84、7.04、8.02 和 8.13 THz 处有多个吸收峰。通过阻抗匹配理论和电场分布研究了七波段吸收的物理机制。通过折射率在 1 到 1.1 之间的周围介质评估了传感功能,得到了良好的品质因数(Q)值为 117。所提出的传感器在检测葡萄糖时具有最高的灵敏度为 4.72 THz/RIU。利用极端随机树(ERT)模型预测中间频率的吸收率,考虑单元尺寸、基底厚度、角度变化和折射率值,以减少模拟时间。通过调整 R 分数评估 ERT 模型预测吸收率的有效性,其接近 1.0 对于 n=2,表明在各种测试情况下的预测效率。实验结果表明,通过使用 ERT 模型模拟吸收体设计,可以节省 60%的模拟时间和资源。基于 ERT 模型的 MMA 传感器具有在生物医学领域如细菌感染、疟疾和其他疾病的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/690f/9889771/9ef41447cd73/41598_2023_29024_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验