Suppr超能文献

通过污水监测早期发现本地 SARS-CoV-2 疫情:一项可行性研究。

Early detection of local SARS-CoV-2 outbreaks by wastewater surveillance: a feasibility study.

机构信息

Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen S, Denmark.

European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Gustav III:s Boulevard 40, 16973 Solna, Sweden.

出版信息

Epidemiol Infect. 2023 Feb 1;151:e28. doi: 10.1017/S0950268823000146.

Abstract

Wastewater surveillance and quantitative analysis of SARS-CoV-2 RNA are increasingly used to monitor the spread of COVID-19 in the community. We studied the feasibility of applying the surveillance data for early detection of local outbreaks. A Monte Carlo simulation model was constructed, applying data on reported variation in RNA gene copy concentration in faeces and faecal masses shed. It showed that, even with a constant number of SARS-CoV-2 RNA shedders, the variation in concentrations found in wastewater samples will be large, and that it will be challenging to translate viral concentrations into incidence estimates, especially when the number of shedders is low. Potential signals for early detection of hypothetical outbreaks were analysed for their performance in terms of sensitivity and specificity of the signals. The results suggest that a sudden increase in incidence is not easily identified on the basis of wastewater surveillance data, especially in small sampling areas and in low-incidence situations. However, with a high number of shedders and when combining data from multiple consecutive tests, the performance of wastewater sampling is expected to improve considerably. The developed modelling approach can increase our understanding of the results from wastewater surveillance of SARS-CoV-2.

摘要

污水监测和 SARS-CoV-2 RNA 的定量分析越来越多地用于监测社区中 COVID-19 的传播。我们研究了应用监测数据进行本地疫情早期检测的可行性。构建了一个蒙特卡罗模拟模型,应用粪便和粪便中 RNA 基因拷贝浓度报告变化的数据进行了应用。结果表明,即使 SARS-CoV-2 RNA 脱落者的数量保持不变,废水中样本中发现的浓度变化也会很大,将病毒浓度转化为发病率估计值将具有挑战性,尤其是脱落者数量较少时。分析了用于早期检测假设疫情的潜在信号,以评估其信号的灵敏度和特异性。结果表明,基于污水监测数据,很难识别发病率的突然增加,尤其是在小采样区域和低发病率情况下。然而,当脱落者数量较多并且结合多个连续测试的数据时,污水采样的性能预计会有显著提高。所开发的建模方法可以提高我们对 SARS-CoV-2 污水监测结果的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a9b/9990400/74069d94fc0d/S0950268823000146_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验