Suppr超能文献

激光刺激内皮靶向纳米颗粒对血脑屏障通透性的力学生物学调控。

Mechanobiological modulation of blood-brain barrier permeability by laser stimulation of endothelial-targeted nanoparticles.

机构信息

Department of Bioengineering, the University of Texas at Dallas, Richardson, TX, 75080, USA.

Department of Mechanical Engineering, the University of Texas at Dallas, Richardson, TX, 75080, USA.

出版信息

Nanoscale. 2023 Feb 16;15(7):3387-3397. doi: 10.1039/d2nr05062e.

Abstract

The blood-brain barrier (BBB) maintains an optimal environment for brain homeostasis but excludes most therapeutics from entering the brain. Strategies that reversibly increase BBB permeability are essential for treating brain diseases and are the focus of significant preclinical and translational interest. Picosecond laser excitation of tight junction-targeted gold nanoparticles (AuNPs) generates a nanoscale mechanical perturbation and induces a graded and reversible increase in BBB permeability (OptoBBB). Here we advanced this technique by showing that targeting endothelial glycoproteins leads to >10-fold higher targeting efficiency than targeting tight junctions both and . With both tight-junction and glycoprotein targeting, we demonstrate that OptoBBB is associated with a transient elevation and propagation of Ca, actin polymerization, and phosphorylation of ERK1/2 (extracellular signal-regulated protein kinase). These collectively activate the cytoskeleton resulting in increased paracellular permeability. The Ca response involves internal Ca depletion and Ca influx with contributions from mechanosensitive ion channels (TRPV4, Piezo1). We provide insight into how the excitation of tight junction protein (JAM-A)-targeted and endothelial (glycocalyx)-targeted AuNPs leads to similar mechanobiological modulation of BBB permeability while targeting the glycocalyx significantly improves the nanoparticle accumulation in the brain. The results will be critical for guiding the future development of this technology for brain disease treatment.

摘要

血脑屏障 (BBB) 维持着大脑内环境的最佳状态,但也阻止了大多数治疗药物进入大脑。能够可逆增加 BBB 通透性的策略对于治疗脑部疾病至关重要,也是大量临床前和转化研究的重点。皮秒激光激发紧密连接靶向金纳米颗粒 (AuNPs) 会产生纳米级机械扰动,并诱导 BBB 通透性呈梯度和可逆增加 (OptoBBB)。在此,我们通过证明靶向内皮糖蛋白比靶向紧密连接的靶向效率高 10 倍以上,进一步推进了这项技术。通过紧密连接和糖蛋白靶向,我们证明 OptoBBB 与 Ca 的短暂升高和传播、肌动蛋白聚合以及 ERK1/2 (细胞外信号调节蛋白激酶) 的磷酸化有关。这些共同激活细胞骨架,导致细胞旁通透性增加。Ca 反应涉及细胞内 Ca 耗竭和 Ca 内流,其中涉及机械敏感离子通道 (TRPV4、Piezo1)。我们深入了解了靶向紧密连接蛋白 (JAM-A) 的 AuNPs 和靶向内皮 (糖萼) 的 AuNPs 的激发如何导致 BBB 通透性的类似机械生物学调节,而靶向糖萼则显著提高了纳米颗粒在大脑中的积累。这些结果对于指导该技术在脑部疾病治疗中的未来发展至关重要。

相似文献

引用本文的文献

3
Nanotechnology-Fortified Manipulation of Cell Ca Signaling.纳米技术强化的细胞钙信号调控
Small Sci. 2024 Jun 26;4(10):2400169. doi: 10.1002/smsc.202400169. eCollection 2024 Oct.
7
Targeting Prefrontal Cortex Dysfunction in Pain.靶向疼痛的前额叶皮层功能障碍。
J Pharmacol Exp Ther. 2024 May 21;389(3):268-276. doi: 10.1124/jpet.123.002046.

本文引用的文献

1
Nanoparticle Fragmentation Below the Melting Point Under Single Picosecond Laser Pulse Stimulation.单皮秒激光脉冲刺激下熔点以下的纳米颗粒破碎
J Phys Chem C Nanomater Interfaces. 2021 Dec 9;125(48):26718-26730. doi: 10.1021/acs.jpcc.1c06684. Epub 2021 Nov 24.
6
Array programming with NumPy.使用 NumPy 进行数组编程。
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
7
8
The blood-brain barrier: Physiology and strategies for drug delivery.血脑屏障:生理学与药物递送策略。
Adv Drug Deliv Rev. 2020;165-166:1-14. doi: 10.1016/j.addr.2019.11.009. Epub 2019 Nov 29.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验