Aðalsteinsson Heiðar Már, Bjornsson Ragnar
Science Institute, University of Iceland, 107 Reykjavik, Iceland.
Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 Rue des Martyrs, F-38054 Grenoble Cedex, France.
Phys Chem Chem Phys. 2023 Feb 8;25(6):4570-4587. doi: 10.1039/d2cp04715b.
Open-shell transition metal chemistry presents challenges to contemporary electronic structure methods, based on either density functional or wavefunction theory. While CCSD(T) is the well-trusted gold standard for maingroup thermochemistry, the accuracy and robustness of the method is less clear for open-shell transition metal chemistry, requiring benchmarking of CCSD(T)-based protocols against either higher-level theory or experiment. Ionization energies (IEs) of metallocenes provide an interesting test case with metallocenes being common redox reagents as well as playing roles as redox mediators and cocatalysts in redox catalysis. Using highly accurate ZEKE-MATI experimental measurements of gas phase adiabatic (5.3275 ± 0.0006 eV) and vertical (5.4424 ± 0.0006 eV) ionization energies of cobaltocene, we systematically assessed the accuracy of the local coupled-cluster method DLPNO-CCSD(T) with respect to geometry, reference determinant, basis set size and extrapolation schemes, PNO cut-off and extrapolation, local triples approximation, relativistic effects and core-valence correlation. We show that PNO errors are controllable the recently introduced PNO extrapolation schemes and that the expensive iterative triples (T) contribution can be made more manageable by calculating it as a smaller-basis/smaller PNO-cutoff correction. The reference determinant turns out to be a critical aspect in these calculations with the HF determinant resulting in large DLPNO-CCSD(T) errors, likely due to the qualitatively flawed molecular orbital spectrum. The BP86 functional on the other hand was found to provide reference orbitals giving small DLPNO-CCSD(T) errors, likely due to more realistic orbitals as suggested by the more consistent MO spectrum compared to HF. A protocol including complete basis set extrapolations with correlation-consistent basis sets, complete PNO space extrapolations, iterative triples- and core-valence correlation corrections was found to give errors of -0.07 eV and -0.03 eV for adiabatic- and vertical-IE of cobaltocene, respectively, giving close to chemical accuracy for both properties. A computationally efficient DLPNO-CCSD(T) protocol was devised and tested against adiabatic ionization energies of 6 different metallocenes (V, Cr, Mn, Fe, Co, Ni). For the other metallocenes, the iterative triples (T) and PNO extrapolation contributions turn out to be even more important. The results give errors close to the experimental uncertainty, similar to recent auxiliary-field quantum Monte Carlo results. The quality of the reference determinant orbitals is identified as the main source of uncertainty in CCSD(T) calculations of metallocenes.
基于密度泛函或波函数理论的当代电子结构方法在处理开壳层过渡金属化学问题时面临挑战。虽然CCSD(T)是主族热化学中备受信赖的黄金标准,但该方法在开壳层过渡金属化学中的准确性和稳健性尚不明晰,需要将基于CCSD(T)的协议与更高层次理论或实验进行基准测试。茂金属的电离能提供了一个有趣的测试案例,因为茂金属不仅是常见的氧化还原试剂,还在氧化还原催化中作为氧化还原介质和助催化剂发挥作用。利用对二茂钴气相绝热电离能(5.3275±0.0006 eV)和垂直电离能(5.4424±0.0006 eV)的高精度ZEKE-MATI实验测量,我们系统地评估了局部耦合簇方法DLPNO-CCSD(T)在几何结构、参考行列式、基组大小和外推方案、PNO截止和外推、局部三重近似、相对论效应和芯价相关方面的准确性。我们表明,通过最近引入的PNO外推方案,PNO误差是可控的,并且通过将昂贵的迭代三重(T)贡献计算为较小基组/较小PNO截止校正,可以使其更易于管理。结果表明,参考行列式在这些计算中是一个关键因素,HF行列式会导致较大的DLPNO-CCSD(T)误差,这可能是由于定性上有缺陷的分子轨道光谱所致。另一方面,发现BP86泛函提供的参考轨道导致的DLPNO-CCSD(T)误差较小,这可能是因为与HF相比,其更一致的MO光谱表明轨道更符合实际。发现一个包括使用相关一致基组进行完全基组外推、完全PNO空间外推、迭代三重和芯价相关校正的协议,对于二茂钴的绝热电离能和垂直电离能分别给出-0.07 eV和-0.03 eV的误差,这两个性质都接近化学精度。设计并测试了一种计算效率高的DLPNO-CCSD(T)协议,以针对6种不同茂金属(V、Cr、Mn、Fe、Co、Ni)的绝热电离能进行测试。对于其他茂金属,迭代三重(T)和PNO外推贡献甚至更为重要。结果给出的误差接近实验不确定性,与最近的辅助场量子蒙特卡罗结果相似。参考行列式轨道的质量被确定为茂金属CCSD(T)计算中不确定性的主要来源。